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Abstract

Decision-making processes behind instrumental actions can be divided into two categories:

goal-directed processes, and automatic (or habitual) processes. Goal-directed processes

evaluate actions based on the value of their consequences and produce a course of action

that will lead to desired goals. This form of decision-making, however, is computationally

demanding and prone to suffer from the “curse of dimensionality”, i.e., it does not scale to

complex environments. To overcome this limitation, individuals employ automatic actions,

which are less flexible than goal-directed actions, but are also less expensive in terms of the

required computational resources. The structure of such automatic actions, their interaction

with goal-directed actions, and their behavioral and computational properties are the topics

of the current thesis. We conceptualize the structure of automatic actions as sequences of

actions that form a single response unit and are integrated within goal-directed processes in a

hierarchical manner. We then represent this hypothesis using the computational framework

of reinforcement learning and develop a new normative computational model for the acqui-

sition of action sequences, and their hierarchical interaction with goal-directed processes.

We develop a neurally plausible hypothesis for the role of neuromodulator dopamine as a

teaching signal for the acquisition of action sequences. We further explore the predictions of

the proposed model in a two-stage decision-making task in humans and we show that the

proposed model has higher explanatory power than its alternatives. Finally, we translate the

two-stage decision-making task to an experimental protocol in rats and show that, similar to

humans, rats also use action sequences and engage in hierarchical decision-making. The re-

sults provide a new theoretical and experimental paradigm for conceptualizing and measuring

the operation of goal-directed and automatic actions and their interactions.
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1 Introduction

Behavioral evidence suggests that decision-making systems behind the choices made by

humans and other animals can be divided to two categories, known as goal-directed, and

automatic processes (also referred to as habitual processes). Goal-directed action is a form of

decision-making guided by encoding the relationship between actions and their consequences

and the value of those consequences. In this form of decision-making an agent deliberates over

the consequences of its actions, and chooses the course of action that leads to desired outcome.

Outcome devaluation studies provide direct evidence that both humans (Valentin, Dickinson,

& O’Doherty, 2007; Tricomi, Balleine, & O’Doherty, 2009) and other animals (C. D. Adams,

1982; Dickinson, 1994; Dickinson, Squire, Varga, & Smith, 1998; Tolman, 1948) engage in

this form of action control. For example, in a typical experiment an agent is first trained

to perform two different actions that earn different food outcomes. After this training, an

outcome devaluation treatment is conducted off baseline or offline; i.e., in a situation where

the outcome is presented without the action being performed, a treatment that generally

involves sating the animals on one of the two outcomes to decrease its value. Subsequently,

back online, a test is conducted in which choice between the two actions is assessed in

the absence of the outcome. Typically, when given this choice, humans and other animals

decrease their performance of the action that previously delivered the now devalued outcome,

demonstrating that such actions reflect both the relationship to their consequences and the

1



Chapter 1. Introduction

value of those consequences.

Extended training makes goal-directed actions habitual or automatic (we will use these two

terms interchangeably hereafter). This automaticity has two manifestations: (i) inflexibility

of actions to the offline changes in the value of their outcomes (Coutureau & Killcross, 2003;

Dickinson et al., 1998; Quinn, Pittenger, Lee, Pierson, & Taylor, 2013; Wassum, Cely, Maidment,

& Balleine, 2009; Yin, Knowlton, & Balleine, 2004, 2005)(Figure 1.1), and (ii) the concatenation

of actions executed together to form action sequences that are then treated as a single response

unit (Lashley, 1951; Book, 1908)(Figure 1.2). These two aspects of automaticity share a similar

neural structure, however, computationally, they have been attributed to two different models:

insensitivity to changes in outcome value has often been interpreted as evidence for a model-

free reinforcement learning (RL) account of instrumental conditioning (Daw, Niv, & Dayan,

2005), whereas the development of action sequences has been linked to hierarchical RL

(Botvinick, 2008; Ito & Doya, 2011).

The current thesis develops the hypothesis that a goal-directed hierarchical RL system can

explain various aspects of decision-making processes, including the behavioral phenomena

which are attributed to model-free RL. We develop a new computational model, and test its

predictions in both humans and rats. The structure of the thesis is as follows: in chapter 2

we review multiple forms of decision-making systems in the brain. In chapter 3 we provide a

new neurally plausible computational model for action sequence learning, and investigate

its behavioral power in explaining automatic actions. In chapter 4 we provide data from

a decision-making task in humans, and we directly compare the proposed hierarchical RL

account and the model-free RL account, in explaining choices. In chapter 5 we develop a task

similar to that we developed in humans, and we provide evidence for the operation of the

hierarchical RL in rats. Finally, in chapter 6 we provide the summary and conclusion of the

thesis.

2



Figure 1.1 – The effect of training on the sensitivity of actions to the value of their outcomes.
Animals were trained to press a lever in order to earn sucrose pellets. One group of animals
received 100 pairings of lever presses with sucrose pellets (Group 100), while the other group
received 500 pairings (Group 500). Before the extinction test, within each group, for some of
the animals the outcome was devalued (Group 100-P and Group 500-P), while for the rest the
outcome remained valued (Group 100-U and Group 100-U). As the figure shows, the number
of responses in Group 500-P is not effected by the devaluation of the outcome, while in Group
100-P, the responses for earning the devalued outcome have decreased. From (C. D. Adams,
1982)

3



Chapter 1. Introduction

Figure 1.2 – Evidence for the formation of action sequences in the sequential reaction time
task (SRTT). When the subjects were asked to perform a fixed sequence of actions (RT re-
peating), reaction times (RT) decreased, which is a sign of the formation of action sequences.
The solid line represents ‘predictive responses’, i.e., the responses that elicit even before the
corresponding stimulus signals that the response should be made. As the figure shows, in
the late stages of training almost all the responses are predictive, which is another sign of the
formation of action sequences. In contrast, when the sequence of actions to be performed
was variable (RT random), reaction times remained slow relative to repeating trials even after
extended training. From (Matsuzaka et al., 2007)

.
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2 Multiple forms of decision-making

Humans and other animals are able to adjust their decisions by learning about their surround-

ing environment. Evidence shows that such decisions, are driven by multiple decision-making

processes, which have partly overlapping neural, computational, and behavioral character-

istics. The aim of this chapter is to provide an overview of each system, and also how these

systems interact in order to produce final actions. We start by introducing some concepts

from reinforcement learning (RL) literature (Sutton & Barto, 1998) - a widely used framework

for studying decision-making processes in the brain - and then, building on this theoretical

framework, we review the psychological and neural properties of each system. The chapter

is divided into two-sections: the prediction problem (section 2.1), and the control problem

(section 2.2), which as their titles indicate, correspondingly address how predictions about

future events are made, and how the predictions are used in conjunction with actions in order

to control the environment. These two sorts of problems roughly map onto what are known

as Pavlovian conditioning, and Instrumental conditioning in the animal learning literature,

which we will present in turn.

5



Chapter 2. Multiple forms of decision-making

2.1 Pavlovian conditioning: the prediction problem

In a classic experiment, Pavlov (1849-1936) trained a dog in a condition in which the presenta-

tion of a stimulus (e.g., a bell) was followed by food. He observed that the dog began to salivate

in response to the presentation of the stimulus, even before the food was being delivered

(Pavlov, 1927), which suggested that the dog had associated the food with the bell. This phe-

nomenon is called Pavlovian conditioning, which in general is composed of three elements:

the predicting stimulus (the bell in this example), which is called conditioned stimulus (CS),

the predicted stimulus (food in this example), which is called unconditioned stimulus (US),

and the response that is triggered in anticipation of the US (salivation in this example), which

is called conditioned responses (CR).

The association between a CS and a US can take place at different levels. Indeed, both the CS

and US have a variety of sensory and motivational features, which can enter into association.

In general, features of a US can be divided into three categories: sensory features, motivational

features, and a reinforcer component. The sensory features of a US define the identity of the

US, which for example can refer to the specific taste of a food or its texture that uniquely

distinguishes it from other stimuli. The motivational features are the representation of the

US across the dimensions of primary incentives such as nutrients, salts, fluids, etc. Finally,

the reinforcer component represents the hedonic component of a US. For example, for a

hungry animal, receiving two units of food pellets has a higher reinforcer component than

receiving one unit of food pellet. During the conditioning process, an animal associates all,

or a subset of the US features with the CS. Later on, whenever the CS is present, the animal

elicits CRs in anticipation that the US will shortly occur (Figure 2.1). In the computational

models of conditioning processes (next sections), the reinforcer component is usually called a

reward component and hereafter we use the term reward component instead of the reinforcer

component.
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2.1. Pavlovian conditioning: the prediction problem

Se

M CS

US

Re

CR

Figure 2.1 – An unconditioned stimulus is generally composed of sensory features (Se), moti-
vational features (M), and a reward (reinforcer) component. A CS can enter into an association
with either of these components, which will then trigger the associated conditioned response
whenever the CS is present.

2.1.1 Markov Reward Process

With some simplifications, the structure of Pavlovian conditioning can be formalized using

Markov Reward Processes. A Markov Reward Process is a tuple (S , {P (.|s)},R), where:

• S is a set of states,

• {P (.|s)} is the transition model. P (s′|s) represents the probability of transition to state s′

if the current state is s.

• R is a reward function. R(s) is the reward of state s.

The term state in the above definition refers to distinguishable situations or events in the envi-

ronment that an individual perceives through its sensory inputs. In Pavlovian conditioning, for

example, presentation of a CS and US correspond to two different states of the environment,

which we can denote by sCS, and sUS correspondingly. In the previous example, the state sCS

is identified by the presentation of the bell signaled by its sensory features such as the sound

that it makes, and state sUS is identified by the sensory features of the US signaled by the

sensory features of the food such as its taste and texture. As such, among the three mentioned

features (sensory, motivational, reward), the sensory features of the US and CS are represented

by the states of the environment. Similarly, R(s) represents the reward component of a state,

as for example, R(sUS) represents the reward component of the US. Finally, the transition

model corresponds to the relation between the states (for example, if the CS (the bell) is always
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Chapter 2. Multiple forms of decision-making

followed by the US, then we will have P (sUS|sCS) = 1).

Thus, in summary, according to a Markov Reward Process, (i) an environment is composed

of several states, (ii) each state has an amount of reward associated with it, and (iii) there is a

transition model that defines how states are related to each other. As such, there is no inherent

difference between CS and US; both are states in the environment with certain sensory and

reward features. Based on this, we can refer to the states in the environment by their temporal

order instead of stating whether they are US or CS: the state of the environment at time t is

referred to as st . For example, within the Pavlovian conditioning, if we assume the origin of

time is when the CS is presented, then we have s0 = sCS, and s1 = sUS. Similarly, the reward

received at time t is referred to as rt (for example, r0 = R(sCS) and r1 = R(sUS)).

The definition of the Markov Reward Process provides a computational description of the

elements of the Pavlovain conditioning process. However, remaining question is how an

animal learns and represents a Markov Reward Process. Here, evidence shows that animals

learn about a Markov Reward Process in two different ways. In the first way, they associate the

CS with the sensory feature of the US, i.e., by presenting the CS, sensory features of the US

can be predicted. In the second way, by presenting the CS, only the reward component of the

US can be predicted. These two forms of Pavlovian conditioning, at the computational level,

correspond to what are known as model-based and model-free learning. We will discuss these

in turn in the next two sections.

2.1.2 Model-based Pavlovian conditioning

In model-based Pavlovian conditioning, an individual learns the transition model of the

environment (and this is why this form of learning is called model-based), which allows it to

predict the next state, given the current state of the environment. An example is predicting

the sensory features of the upcoming US during the CS presentation. Such learning can take

place for example using the Rescorla-Wagner rule (Rescorla & Wagner, 1972), according to

which the association between the CS and the US gradually increases with each pairing of
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2.1. Pavlovian conditioning: the prediction problem

the US and CS. Within the context of the Markov Reward Process, the Rescorla-Wagner rule

corresponds to the learning of the transition model of the environment1, i.e., the strength

of the association between a CS and a US in the Rescorla-Wagner model is equivalent to the

probability of the CS given the US. Inspired by the Rescorla-Wagner rule, for each pairing of

CS and US, the transition model can be updated as follows:

∆P (sUS|sCS) =α(1−P (sUS|sCS)) (2.1)

∆P (sUS|sCS) =−αP (sUS|sCS) (2.2)

whereα is the learning rate, and for example it can depend on the salience of the CS (0 <α< 1)2.

sUS is any state other than sUS. The above equation intuitively implies that with each paring of

CS and US, the predicted probability of the US after the CS increases, and the probability of

no US after the CS decreases, and the rate of these increases and decreases depends on α.

The above conception of model-based Pavlovian conditioning is simplistic, and indeed, recent

theoretical work indicates that the structure of the Pavlovian learning can be more compli-

cated than learning the transition model, and can involve learning the latent causes in the

environment (Courville, Daw, & Touretzky, 2006; Gershman, Blei, & Niv, 2010; Gershman &

Niv, 2012). Within these accounts, instead of predicting the probability of the CS given the US

(P (sUS|sCS)), the learning involves predicting both the CS and US given a latent cause (LC ) in

the environment (P (sUS, sCS|LC )). Pavlovian conditioning in this conception involves inferring

the likelihood that a latent cause is present and, based on that, predicting the probability that

the US will happen.

One line of behavioral evidence supporting model-based Pavlovian conditioning comes from

post-conditioning stimulus revaluation experiments. In such experiments, after an initial

Pavlovian conditioning phase and the establishment of CRs, the ability of the US to induce

1It should be noted that the Rescorla-Wagner model is relevant only to the conditions in which US and CS occur
at the same time (see (Niv & Schoenbaum, 2008) for a discussion). However, here this learning rule is applied in
conditions that US and CS do not occur at the same time, in order to draw a parallel between this learning rule and
model-based Pavlovian conditioning.

2Note that α is usually multiplied by another factor denoted by β, which is the associative value of the US
(0 <β< 1)). Here for simplicity this factor is not included.
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Chapter 2. Multiple forms of decision-making

Table 2.1 – Post-conditioning stimulus revaluation. The experiment consists of three phases.
The first is the establishment of CRs. In the second phase, for one group of the subjects, the
ability of the US to induce CRs is manipulated (revalued). In the third phase (test), the ability
of the CS to trigger CRs is measured.

Group Phase 1 Phase 2 Test
Revalued CS → US US revaluation CS?
Control CS → US - CS?

unconditioned responses is manipulated (decreased or increased). Then, in the test phase,

the ability of the CS to induce CRs is measured in extinction (Table 2.1). Evidence from

rats (Rescorla, 1973; P. Holland & Rescorla, 1975; Cleland & Davey, 1982), humans (White &

Davey, 1989; Davey & McKenna, 1983), and non-human primates (Gallagher, McMahan, &

Schoenbaum, 1999; Izquierdo, Suda, & Murray, 2004) generally indicates that the stimulus

revaluation procedure changes the ability of the CS to induce CRs, a finding that indicates

animals have access to the sensory features of the US during the presentation of the CS, and

thus they have learned the transition model of the environment during the conditioning

phase.

In one example, Rescorla trained rats in a Pavlovian conditioning experiment in which a

CS was paired with a loud noise (US) (Rescorla, 1973). After this training, animals showed

suppression of lever presses during the CS. In the next phase of the experiment, a group of

animals were habituated to the loud noise by the repeated presentation of the US, a treatment

which decreases the effectiveness of the loud noise to induce unconditioned responses. In

the third phase of the experiment, animals were tested in the presentation of the CS. Results

indicated that the animals that had been habituated to the US, showed less suppression of

lever presses in comparison to the control group, which were not habituated to the loud noise.

In another experiment (Gallagher et al., 1999), animals were first trained to associate the

presentation of a CS with the delivery of food in a food cup. During the training animals

started to approach the food cup during the CS, which is a type of CR in anticipation of the

delivery of the US. In the devaluation phase the US was paired with illness by injection of LiCl

after the consumption of the US in home cages. In the test phase the animals for which the
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2.1. Pavlovian conditioning: the prediction problem

Table 2.2 – Design of the blocking and identity unblocking experiments. Please see the text for
a description.

Group Phase 1 Phase 2 Test
blocking CS1 → US CS1 + CS2 → US CS2 → CR-
identity unblocking CS1 → US1 CS1 + CS2 → US2 CS2 → CR+

US was devalued showed less approaches to the food cup during the CS, than the animals for

which the US was not devalued.

Another line of evidence in support of the model-based Pavlovian conditioning comes from

identity unblocking experiments (Table 2.2). The blocking paradigm has three phases: in the

first phase, a CS is associated with a US (CS1 → US). In the second phase, a compound of

the previous CS with a new CS (CS2) is associated with the US. Finally, in the test phase, the

ability of CS2 to induce a CR is measured. The results generally indicate that CS1 blocks CS2

from being associated with the US, and during the test, CS2 is less able to induce a CR (Kamin,

1969). The general explanation for why blocking happens is, after the first phase, CS1 is a good

predictor of the US, and thus CS2 does not become associated with the US.

The blocking effect can be unblocked if, in the second phase of a blocking experiment, the

identity of the US changes from that in phase 1. In identity unblocking, in the second phase,

the US is replaced by another US with different sensory properties, but the same reward

component. For example the US in the first phase can be food pellets with a certain flavor, and

in the second phase it can be the same food pellets with a different flavor. In this condition,

CS1 is still able to predict the reward component of the US, but not the sensory features of

it. Results of such experiments generally indicate that the CS2 triggers CRs during the test

(McDannald, Lucantonio, Burke, Niv, & Schoenbaum, 2011; P. C. Holland, 1984), which means

that the target of the learning process in the second phase is the prediction of the sensory

features of the US, consistent with model-based Pavlovian conditioning.

The identity unblocking effect is not always observed in experiments (e.g., (Ganesan & Pearce,

1988)). In fact, under some experimental conditions, blocking occurs even when the iden-

tity of the outcome in the second phase is different from the one in the first phase. Such
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Chapter 2. Multiple forms of decision-making

experimental conditions are not yet systematically investigated, however, the fact that under

some conditions the blocking effect is not observed, suggests that the Pavlovian conditioning

process is derived by multiple learning processes, including model-based learning. One of

such processes is model-free Pavlovian conditioning, which will be discussed in the next

section.

2.1.3 Model-free Pavlovian conditioning

In model-free Pavlovian conditioning, an individual learns the reward component of the

upcoming state, without necessarily learning the sensory features of that state. For example,

an animal can learn that it will receive one unit of reward shortly after the CS, while not being

able to predict the identity of the upcoming state (in contrast to the model-based Pavlovian

conditioning). Within the Markov Reward Process context, instead of learning P (sUS|sCS)

(predicting the sensory features of the US during the CS), animals predict the amount of

reward that they will receive from CS onwards. Take for example a condition in which a CS is

followed by a US1 which constitutes one unit of reward, and after that there will be another

US (US2) which constitutes two units of reward. In this condition, the total amount of reward

that will be earned since the CS presentation is the sum of the rewards earned during the CS,

US1, and US2, which is called the value of the CS (Figure 2.2). The value of the CS, therefore,

equals 3 in this example and, in general, the total amount of reward that can be earned in a

state, and its future states is called the value of that state, denoted by V (s):

V (s) = E

[
T−1∑
τ=0

R(sτ)|s0 = s

]
(2.3)

where E is expectation over future states, and T is the duration of the experiment. The goal

of model-free Pavlovian conditioning is then to directly learn the amount of reward that can

be earned in the future states. Note that such values can also be calculated by predicting the

future states using model-based Pavlovian conditioning. However, the goal of model-free

Pavlovian conditioning is to predict such values without requiring the prediction of future

states. The way these values are learned is described in the rest of this section; before that we
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sCS

Re

Se

sUS1

Re

Se

sUS2

Re

V(CS)
V(US1)V(US2)

Figure 2.2 – The structure of the environment is such that a CS is followed by US1, and US1 is
followed by US2. Each stimuli is composed of sensory features (Se), and a reward component
(Re). The model-based Pavlovian conditioning is learning to predict the sensory information
of the next state (arrows shown in the figure). On the other hand, model-free Pavlovian
conditioning is to learn the value of each state, which is the total amount of reward that will
be earned during or after that state. In this illustration, the value of the CS, denoted by V (C S),
includes the reward earned during the CS, plus the rewards earned during US1 and US2. The
value of US1 is the reward earned during US1 and US2. Finally, the value of US2 is the reward
earned during US2.

will review some evidence in support of such form of Pavlovain conditioning.

One line of evidence supporting model-free Pavlovian conditioning comes from quantity

unblocking experiments (Rescorla, 1999; Blaisdell, Denniston, & Miller, 1997; McDannald et

al., 2011). In these experiments (Table 2.3), in the first phase, a CS is being associated with a

US. In the second phase, the reward component of the US is manipulated by changing the

quantity of the US. For example, instead of earning one food pellet, the subjects earn two

food pellets at each pairing of the CS and US (see also (P. C. Holland, 1988) for the effect of

downshift in the magnitude of the US). This manipulation does not change the identity of

the US, but it changes the reward component of the US. In this condition, since CS1 is able

to predict the identity of the US in the second phase, model-based Pavlovian conditioning

predicts that CS1 should be able to block CS2 from being associated with the US3. In contrast,

evidence shows that changing the magnitude of the US unblocks CS2, which indicates that

predicting the reward component of the US is also a target of the Pavlovian conditioning (see

also aversive superconditioning (Dickinson, 1977) for a similar line of evidence).

3Note that in model-based Pavlovian conditioning, CS1 is associated with the identity of US, not amount of
reward received during US. The amount of reward received during US will be associated with the sensory features
of US (not CS).
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Table 2.3 – Design of the blocking and quantity unblocking experiments. Please see the text
for a description.

Group Phase 1 Phase 2 Test
blocking CS1 → US CS1 + CS2 → US CS2 → CR-
quantity unblocking CS1 → US CS1 + CS2 → 2 × US CS2 → CR+

Equation 2.3 defines the value of a state as the total amount of reward that can be earned in

the future, starting from that state. However, a remaining question that needs to be answered

is how an agent learns this value. Here, neural and behavioral evidence shows that the value

of a state is learned using the temporal-difference learning method (Sutton, 1988). According

to this method, an agent starts learning by an initial guess about the value of each state. Then,

during the learning process, as the agent receives rewards, it updates the values of states

according to how much the value of each state was mis-predicted. Formally, let’s assume that

the agent is in state s, and receives reward r , and then transfers to state s′. Also, let’s denote

the current estimate of the value of state s with V̂ (s), which means that the agent expected

to earn V̂ (s) amount of reward in the future, but, what it has actually earned in the current

trial is r amount of reward, plus whatever it will earn in the next state (V̂ (s′)), which will sum

to r + V̂ (s′). This difference between what the agent expected to earn, and what it actually

earned is the reward prediction error, denoted by δ:

δ= r + V̂ (s′)− V̂ (s) (2.4)

The calculation of the above error signal is one form of the bootstrap method, since the agent is

not sure about the value of the next state (V̂ (s′)), but uses it anyway to calculate the prediction

error of the current state, with the hope that after several learning trials, all the values gradually

converge to their true values. The calculated reward prediction error is then used to adjust the

value of the states:

∆V̂ (s) =αδ (2.5)

where α is a learning rate. This update rule changes ∆V̂ (s) in the direction that decreases
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the error signal, and eventually when the error signal becomes zero, the true value of ∆V̂ (s)

is learned. One attractive feature of the above learning rule is the correspondence between

the error signal (δ), and the activity of mid-brain dopamine neurons (Montague, Dayan, &

Sejnowski, 1996; Schultz, Dayan, & Montague, 1997; Houk, Adams, & Barto, 1994). Indeed,

there is extensive evidence in rodents and non-human primates that the activity of the mid-

brain dopamine neurons encodes the prediction error (see (Clark, Hollon, & Phillips, 2012) for

a review), and therefore, the model-free conception of the Pavlovian conditioning provides a

neurally plausible way of learning the value of different stimuli. We will present more evidence

in section 2.4.2, when explaining model-free instrumental learning.

2.2 Instrumental conditioning: the control problem

In the Pavlovian conditioning an individual learns to make predictions about the future states

of the environment, however, it cannot control those future states. In contrast, in instrumental

conditioning, an individual can influence future states of the environment by taking actions.

The goal of taking actions is to earn the maximum amount of reward, and the minimum

amount of punishment during the course of a task. This problem is known as reinforcement

learning (RL) in the machine learning literature, and it refers to the problem of learning to

choose a course of action so as to maximize a long-term objective. In a typical RL setting, an

agent (or a controller) interacts with an environment (or a system) by executing actions in

the environment and transitioning to a new state in the environment (Figure 2.3). Similar

to Pavlovian conditioning, each state is composed of a sensory component and a reward

component that the agent experiences by transitioning to that state.

2.2.1 Markov Decision Process

In section 2.1, we presented the Markov Reward Process as a way to formally represent Pavlo-

vian conditioning. In the case of instrumental conditioning, we augment a Markov Reward

Process with a set of actions, turning the Markov Reward Process into a Markov Decision
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Agent

Environment

Action

reward

state

Figure 2.3 – A typical RL setting. An RL agent makes actions in the environment, receives a
reward and transitions to the new state of the environment after executing each action.

Process (MDP). An MDP can formally be represented by a five tuple (S ,A , {P (.|s, a)},R,T ),

where:

• A set of states S , which is called the state space.

• A set of actions A ,

• The transition model P (.|s, a) (s ∈ S , a ∈ A ). P (s′|s, a) represents the probability of

transition to s′ by taking action a in state s,

• The reward function R, which represents the reward associated with each state. R(s)

(s ∈S ) is the reward received by transitioning to state s.

• T is the number of decisions that are to be made.

Take for example the situation in a Skinner box, in which there are two levers available (left

lever and right lever), and pressing the left lever leads to the delivery of food pellets in the

food magazine, and pressing the right lever leads to the delivery of a sucrose solution into the

magazine. This environment consists of three states. The first state is the initial condition of

the box in which the outcome has not yet been delivered (si). By pressing the left lever, the

environment enters the second state in which a food pellet is delivered (sp), and similarly by

pressing the right lever, the environment enters the third state in which a sucrose pellet is

delivered (ss). An agent perceives entering into these states through the information that it

receives via its sensors. If for example a rat is interacting with this environment, then entering

into state sp is signaled to the animal by the specific sensory properties of the food pellets that
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the animal experiences during consumption and, similarly, transition to state ss is signaled

by the specific sensory properties of sucrose. The state that an action leads to is sometimes

referred to as the outcome of that action. For example, in the above example, food pellets

are the outcome of the left lever, and the sucrose solution is the outcome of the right lever.

Within this example, there are two actions available, pressing the left lever (Al) and pressing

the right lever (Ar). Since by taking action Al the environment transitions to state sp we will

have P (sp|si, Al) = 1, and likewise, P (ss|si, Ar) = 1. As another example, assume a condition in

which on average every four left lever presses lead to the delivery of a food pellet (random-

ratio 4 schedule), which means that P (sp|si, Al) =
1

4
(these probabilities are sometimes called

action-outcome contingencies (A-O) in psychological terms).

Finally, similar to the Markov Reward Processes, there is a reward associated with each state.

In the above example, when the animal consumes food pellets, it assigns an incentive or a

reward to the current state of the environment, sp (this process is called incentive learning

(Dickinson & Balleine, 2002)). This reward is denoted by R(sp) for the pellet, and R(ss) for the

sucrose. For example, if a rat values food pellets twice as much as the sucrose solution, then

we can assume R(sp) = 1, and R(ss) = 0.5. Based on these factors, the MDP describing the

environment will be:

• S = {si, sp, ss},

• A = {Al, Ar},

• P (.|s, a) = {P (sp|si, Al) = 1,P (ss|si, Ar) = 1}

• R(sp) = 1, R(ss) = 0.25

• T = 10

where we assumed that there are 10 trials in which the animal is allowed to make a decision

(T = 10).
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The action selection policy of an agent indicates which action will be taken in each state. The

policy is denoted by π(.|s), s ∈S , and it is the probability of taking action a in state s. In the

above example, if the agent always chooses the left lever, then we will have π(Al|si ) = 1, which

means that the probability of taking action Al in state si is one. The value of a policy, V π, can

be defined as the total reward that the agent earns if it follows that policy:

V π(s) = E

[
T−1∑
t=0

r (st )

]
(2.6)

For instance, in the condition described above, if the agent follows a policy that indicates

taking action Al in all the trials, (π(Al|si ) = 1), then V π(s) = T since it will earn one amount of

reward in each trial. If the agent takes an action randomly (π(Al|si ) = 0.5, π(Al|si ) = 0.5), then

half of the time it receives R(sp), and the rest of the times it receives R(ss), and thus, the value

of the policy will be V π(si ) = 0.75T . Among all the action selection policies that an agent can

take, there is one policy which yields the highest amount of future rewards, which is called the

optimal policy, and is denoted by π∗.

As mentioned earlier, the goal of a RL agent is to take the course of action that maximizes the

reward earned, or in other words, the goal is to discover the optimal policy (or close to optimal).

Such a policy is not known to the agent at the beginning, and it needs to be learned through

the interaction of the agent with the environment, a process which is called instrumental

conditioning. During instrumental conditioning, the agent builds a representation of the

environment, and then uses that representation to decide which action should be taken at

each state. Such a representation, however, is not unique, and there are multiple ways that the

agent can represent the environment, and yet maintain a good action selection policy. In fact,

evidence shows that depending on the internal and environmental conditions, individuals

can switch between different representations. In particular, in some conditions instrumental

actions exhibit the properties of goal-directed actions, and in other conditions they seem to

be automatic actions. These types of actions (instrumental actions) are explained in detail in

the following sections, and their behavioral and theoretical aspects are the main focus of the

current thesis.
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2.3 Instrumental conditioning: goal-directed actions

2.3.1 Behavioral properties

Goal-directed action selection can be defined as an action selection policy which is sensitive

to the changes in the underlying MDP of the environment. In simple words, in goal-directed

decision-making, an agent that previously took an action in order to attain a certain goal, will

no longer take that action if the value of the goal decreases for it, or it no longer believes that

the action will lead to the goal that it wanted to attain. Guided by this definition, a commonly

used experimental method for determining whether action selection is goal-directed, is to

manipulate the reward of the states of the environment, and then test whether it affects action

selection. A typical experiment for assessing whether action selection is goal-directed is called

outcome revaluation (Table 2.4). In such experiments, an agent is first trained to perform

two different actions that earn different food outcomes (i.e, two different actions that lead to

two different states). After this training, an outcome revaluation treatment is conducted, in

which the value of one of the outcomes (i.e., one of the states) is manipulated, a treatment

that generally involves sating the animals on one of the two outcomes to decrease its value.

Subsequently, back online, a test is conducted in which the choice between the two actions is

assessed in the absence of the outcome. Typically, when given this choice, humans and other

animals decrease their performance of the action that previously delivered the now devalued

outcome, which can be regarded as an operational definition that action selection has been

goal-directed (Colwill & Rescorla, 1985).

Changes in the value of outcomes is usually conducted in an offline manner, in which the

value of the outcome is manipulated without taking actions. In contrast, in online outcome

devaluation, the value of an outcome is manipulated during the performance of instrumental

actions. For example, assume that an animal has learned that food pellets can be earned

by pressing the left lever in the operant chamber. In this condition, the offline outcome

devaluation of food pellets can be achieved by feeding the animal with food pellets (without

requiring it to take any instrumental action) until it gets sated. In contrast, online outcome
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Table 2.4 – Design of revaluation experiments. During the training phase, subjects learn that
the outcome of one of the actions (A1) is O1, and the outcome of the other action is O2. Then,
the value of one of the outcomes is increased (inflation), or decreased (outcome devaluation).
Finally, during the test phase, animals are given a choice between A1 and A2, in order to probe
whether changes in the value of the outcomes affect their action selection.

Experiment Training Devaluation/Inflation Test

Devaluation
A1→O1
A2→O2

O1↓ A1 vs A2

Inflation
A1→O1
A2→O2

O1↑ A1 vs A2

devaluation of food pellets can be achieved by allowing animals to earn food pellets in the

training chamber by taking the instrumental action (pressing the left lever in this example).

The criteria for action selection to be goal-directed includes both online and offline outcome

devaluation. In practice, however, only an offline outcome devaluation test is conducted,

which is presumably a more stringent test than online outcome devaluation. It should also be

noted that, the test of outcome devaluation experiments is usually conducted in extinction

conditions in which the agent does not receive outcomes as a result of taking instrumental

actions. The benefit of testing in extinction conditions is that action selection only reflects

what the agent has learned prior to the test, and is not confounded by online learning during

the test.

The two common ways of manipulating outcome values are specific satiety, and conditioned

taste aversion. In specific satiety, animals are pre-fed with the outcome which we want to

devalue. For example, if the outcome of one of the actions is a food pellet, and the outcome of

the other action is a sucrose pellet, then changing the value of the sucrose pellet is achieved

by pre-feeding animals with sucrose pellets for one hour before the test. An alternative way

to change the value of an outcome is conditioning a taste aversion to the outcome. Animals

readily associate gastric malaise with specific foods and tastes (Garcia, Kimeldorf, & Koelling,

1955). Lithium chloride (LiCl) induces a gastric malaise in rats when injected intraperitoneally

and, by pairing the consumption of the outcome with injections of LiCl, animals attribute the

illness to the outcome they have just consumed, and in this way, the value of the outcome

decreases.
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2.3.2 Computational models: model-based RL

The observation that an offline change in the value of a state influences action selection,

reveals two aspects of goal-directed learning. Firstly, it shows that the learning algorithm

builds a representation of the transition model of the environment, or in other words, it has

learned action-outcome contingencies; otherwise, it is not possible for an agent to know which

action’s value will be affected by the change in the value of a state (as it has not learned the

links between actions and states). Secondly, it shows that in addition to the transition model

of the environment, actions are also guided by the reward component of states, otherwise

changing the reward component of the states by devaluation would not affect actions. Action

outcome contingencies (or the transition model of the environment in RL terms), and the

reward component of different outcomes are referred to as a model of the environment, and a

RL algorithm that builds a representation of the model of the environment is called model-

based RL.Within this framework, the explanation of a typical outcome devaluation experiment

is as follows: during the initial training, the agent learns the value of different states, as well

as the transition model of the environment. After the initial learning, during the outcome

revaluation phase, the value of one of the states updates, which leads to a change in the reward

function. Finally, during the test, the values of actions are calculated using the new reward

function, which will cause a decrease in the performance of the action that has a devalued

outcome. As such, model-based RL can produce behavior that is similar to the results of the

outcome revaluation experiments, and it is suggested, therefore, to be a model of goal-directed

learning (Daw et al., 2005; Keramati, Dezfouli, & Piray, 2011).

The next issue is how an agent learns the model of the environment. As mentioned earlier,

the model of the environment has two components: the transition model of the environment,

and the reward of each state. Let’s assume an agent is in state s, and performs action a and

enters a new state, s′. Given these experiences, the estimated probability of reaching s′ given s

and a increases, for example using the following rule:

∆P (s′|s, a) =α(1−P (s′|s, a)) (2.7)
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where α is a learning rate. Similarly, the estimated probability of reaching all the states other

than s′ (denoted by s̄) decreases:

∆P (s̄|s, a) =−αP (s̄|s, a) (2.8)

where α is a learning rate. In this way, after each experience of a transition to a new state the

agent updates its estimates of the transition model of the environment. At the same time, by

entering a new state, the agent also receives a reward by which the reward function will be

updated. For example, if the agent receives reward r by entering into state s, the reward of

state s updates as follows:

∆R̂(s) =α(R̂(s)− r ) (2.9)

where α is a learning rate. By having an estimate of the model of the environment, an agent

can calculate the value of each action. To see how this can be done, let’s denote the value of

action a in state s as Q(s, a). The value of such a state-action pair is the reward received in

state s (R(s)), plus the value of each new state that the action might lead to (V (s′)) weighted by

the probability of reaching each new state (P (s′|s, a)):

Q(s, a) = R(s)+∑
s′

P (s′|s, a)V (s′) (2.10)

the above equation defines the value of each state-action pair using the values of states (V (s′)).

Under the optimal policy, we can assume that in each state the agent will take the action that

has the highest value, and thus the value of a state will be equal to the value of the highest

state-action in that state:

V (s) = max
a

Q(s, a) (2.11)

where V (.) and Q(., .) refer to the values of states, and state-action pairs respectively.

Equations 2.10 and 2.11 are called Bellman optimality equations, which can be solved using
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different methods (Puterman, 1994). One such method is the tree search method in which,

starting from a state, the agent unfolds each node of the tree using equation 2.10, and continues

this process until it reaches a terminal state, i.e., a state which does not lead to any other

state (or an absorbing state). There are methods other than the tree search to solve Bellman

equations such as value iteration and policy iteration (e.g., (Puterman, 1994)). However, such

methods often suffer from the curse of dimensionality (Bellman, 1961): the complexity of the

state-space of the problem (and therefore finding the course of action that maximize the total

reward) often increases exponentially with the number of features or dimensions that define

the problem. For example, in the case of the tree search, for each step further that the agent

desires to predict the consequence of its actions, the number of nodes of the tree that need to

be unfolded increases exponentially. In the next section, we look more closely at this issue.

2.3.3 Computational models: complexity measures

The computational cost of finding the (near) optimal solution of an MDP is often called

computational complexity, and as we mentioned before the model-based approaches suffer

from high computational complexity (see (Littman, 1996) for a survey). For example, in

a standard model-based RL algorithm, known as Rmax, the computational complexity for

planning the next action isΩ(|S|2|A|) where |S| is the size of the state space, and |A| is the size

of the action space. As we will discuss in the next section, there are other algorithms which are

more efficient than model-based RL in terms of computational complexity.

Other than computational complexity, there are two more aspects that should be considered

when evaluating decision-making algorithms: sample complexity (Kakade, 2003), and space

complexity. Sample complexity, roughly means how much data an agent needs to gather in

order to make optimal decisions. As such, the sample complexity of an algorithm is basically a

reflection of how the algorithm trades-off between exploration and exploitation strategies. The

space complexity refers to the amount of space or memory an algorithm needs in the worst

case scenario. For example in a standard model-based algorithm, called Rmax (Brafman &

Tennenholtz, 2003), the space complexity isΘ(|S|2|A|) , which is intuitive since the probability
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of transition from each state to other states by each action should be stored by the algorithm.

There are algorithms other than model-based RL for solving an MDP, which have different

complexity properties. For example, a class of algorithms called model-free RL have lower

computational and space complexity than model-based RL, but can have higher sample com-

plexity than model-based RL. As such, it is not surprising that the brain employs different

algorithms depending on its available memory, computational resources, and environmental

conditions. In fact, in the next section, we provide behavioral evidence that the decision-

making process in the brain deviates from simple model-based RL. In particular, we review

behavioral evidence that support the brain using model-free RL (section 2.4.1), and hierarchi-

cal RL (section 2.4.4). Decision-making in such processes can be seen as a more automated

form of action selection, since such decision-making processes usually have lower computa-

tional or space costs compared to model-based RL. As such we call such processes automatic

processes, which is the topic of the next sections.

Before getting on to the properties of automatic actions, it should be noted that automatic

actions are not the only method that the brain utilizes to overcome the curse of dimensionality.

Some theories suggest that goal-directed decision-making collaborates with the Pavlovian

process for action control. Imagine that an agent desires to perform a tree search to make a

goal-directed action, but the depth of the tree is beyond the available computational resources

of the agent. In such a situation the agent can use some heuristics to approximate action

values. One psychologically plausible way to perform such heuristics is to use model-free

Pavlovian values of the states instead of calculating the value of each action in that state (see

(Huys et al., 2012) for a related approach). For example, a person might deliberate over the

available paths (actions) that can be taken to reach home, but will not calculate the values of

the actions that might be taken (expanding the tree) after reaching home, and will instead use

a model-free Pavlovian value that has previously been assigned to the state of being at home.

Another way of restricting the size of the forward search is searching the tree bottom-up

instead of top-down. This means that an agent first determines which outcome is desired, and
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Table 2.5 – Design a typical specific Pavlovian-instrumental transfer experiment. Please see
the text for description.

Pavlovian phase instrumental phase Test
S1→O1
S2→O2

A1→O1
A2→O2

S1: A1 vs A2
S2: A1 vs A2

then calculates which course of action leads to that outcome. While in the top-down approach,

the agent first considers which actions are available, and calculates all the potential outcomes

of the available actions4. A manifestation of such a process (bottom-up) can probably be

seen in a phenomenon known as specific Pavlovian-instrumental transfer (sPIT). A typical

sPIT experiment has three phases (Table 2.5). In the first phase (Pavlovian phase), two neutral

stimuli (S1 and S2) are being paired with two distinguishable outcomes (S1-O1, S2-O2). In the

second phase (instrumental phase), the outcomes are paired with two different actions (A1-O1

and A2-O2). Finally, in a test phase, animals are given a choice between A1 and A2 in the

presence of S1 or S2. Results generally show that in the presence of S1, animals perform the

action with similar outcome to that paired with S1 (action A1), and similarly, in the presence

of S2, animals perform action A2 (e.g., (Trapold & Overmier, 1972; Baxter & Zamble, 1982;

Kruse, Overmier, Konz, & Rokke, 1983; Colwill & Motzkin, 1994; Corbit, Muir, & Balleine, 2001)).

One interpretation of such results is that, the presence of say S1, primes the representation

of O1, and then the subject searches for the action that leads to O1, i.e., A1, which biases the

action selection toward the choice of action that has a consistent outcome with the presented

stimuli (see (Balleine & O’Doherty, 2010)). Such kinds of interactions between instrumental

and Pavlovian systems are beyond the scope of the current thesis, and we will not discuss

them further.

2.4 Instrumental conditioning: automatic actions

In certain situations, actions made by an individual are not consistent with the goal-directed

schema explained in the previous section. Such deviations can generally be categorized into

4Note that the relative efficiency of the bottom-up search to the top-down search depends on the structure of
the decision-making tree, e.g., number of available actions and available outcomes, and it is not always necessarily
the case that the bottom-up search is better than the top-down search.
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two forms of behavior: (i) insensitivity to outcome devaluation and contingency degradation,

and (ii) performance of action sequences. In the following sections, we will explain each form

in turn, and then we will explore the theoretical aspect of each form.

2.4.1 Behavioral properties: outcome devaluation

As mentioned in the previous section, goal-directed actions are sensitive to changes in the

value of their outcomes. However, evidence shows that overtraining changes this property of

actions and makes them: (i) insensitive to changes in the value of the outcome (C. D. Adams,

1982; Dickinson, Balleine, Watt, Gonzalez, & Boakes, 1995; P. C. Holland, 2004; Killcross &

Coutureau, 2003; Yin et al., 2004; Lingawi & Balleine, 2012; Gremel & Costa, 2013); and (ii)

insensitive to changes in the causal relationship between the action and outcome delivery

(Dickinson et al., 1998). Here we describe, for illustration, data from a recent study in which

we were able to observe both effects in the same animals, in the same experiment, comparing

moderately trained and overtrained actions for their sensitivity to devaluation, induced by

outcome-specific satiety, and contingency degradation, induced by the imposition of an

omission schedule in rats. The data is presented in Figure 2.4. Rats were trained to press a

lever for sucrose and, after the satiety treatment, given a devaluation test (Figure 2.4A). After

retraining, they were given the contingency degradation test (Figure 2.4B). In the first test,

moderately trained rats showed a reinforcer devaluation effect; those sated on the sucrose

outcome reduced performance on the lever compared to those sated on another food. In

contrast, groups of overtrained rats did not differ in the test. In the second test, rats exposed

to the omission contingency were able to suppress the previously trained lever press response

to get sucrose, but only if moderately trained. The performance of overtrained rats did not

differ from the yoked, non-contingent controls.

There is an important difference between the experiment described above, and the experi-

ments described in the previous section for the test of goal-directed actions. In the above

experiment, there is only one instrumental action available, however, in the experiments

explained in the previous section, there are two actions, and two outcomes available in the
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Figure 2.4 – Four groups of rats (n=8) were trained to lever press for a 20% sucrose solution
on random-interval schedules (RI1, RI15, RI30, RI60) with moderately trained rats allowed
to earn 120 sucrose deliveries and overtrained rats 360 sugar deliveries (the latter involving
an additional 8 sessions of RI60 training with 30 sucrose deliveries per session). (A) For the
devaluation assessment, half of each group was then sated either on the sucrose or on their
maintenance chow before a 5-min extinction test was conducted on the levers. As shown in
the figure (panel A), moderately trained rats showed an reinforcer devaluation effect; those
sated on the sucrose outcome reduced performance on the lever relative to those sated on the
chow. In contrast, groups of overtrained rats did not differ in the test. Statistically we found a
training x devaluation interaction, F(1,28)=7.13, p<0.05, and a significant devaluation effect in
the moderately trained, F(1,28)=9.1, p<0.05 but not in the overtrained condition (F<1). (B) For
the contingency assessment, after devaluation all rats received a single session of retraining
for 30 sucrose deliveries before the moderately trained and overtrained rats were randomly
assigned to either an omission group or a yoked, non-contingent control group. During the
contingency test the sucrose outcome was no longer delivered contingent on lever pressing
and was instead delivered on a fixed time 10 sec schedule. For rats in the omission groups,
responses on the lever delayed the sucrose delivery by 10 sec. Rats in the yoked groups received
the sucrose at the same time as the omission group except there was no response contingency
in place. As is clear from the figure (panel B), rats exposed to the omission contingency in the
moderately trained group suppressed lever press performance relative to the non-contingent
control whereas those in the overtrained groups did not. Statistically, there was a training
x degradation interaction, F(1,28)=5.1, p<0.05, and a significant degradation effect in the
moderately trained, F(1,28)=7.8, p<0.05, but not in the overtrained condition (F<1).
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environment. In fact, evidence indicates that when animals have a choice between two instru-

mental actions, their choices remain sensitive to outcome devaluation, even after extended

training (Kosaki & Dickinson, 2010), and therefore, the training conditions for the study of

automatic actions usually consist of only one instrumental action.

In fact, even when only one instrumental action is available, other factors promote the for-

mation of automatic actions. In particular, random interval schedules of reinforcement (RI),

enhance the formation of automatic actions, in comparison to ratio schedules of reinforce-

ment or fixed-interval schedules (Dickinson, Nicholas, & Adams, 1983; Gremel & Costa, 2013;

Derusso et al., 2010) (see also (Derusso et al., 2010)).

2.4.2 Computational models: model-free RL

As mentioned in the previous sections, the learning and expression of goal-directed actions is

guided by what has been learnt about the model of the environment. The observation that

over-training renders such goal-directed actions insensitive to outcome revaluation, reveals

that the selection of automatic actions cannot be guided by the model of the environment.

Associative learning theories attribute such actions to stimulus-response (S-R) learning, which

means than an agent learns to elicit a response (R) when faced with a certain stimulus (S). In

essence, S-R theories of instrumental conditioning argue that whenever the performance of a

response is followed by positive reinforcement, then the strength of the association between

the response and the antecedent stimulus increases. Conversely, negative reinforcement after

a response decreases the strength of the S-R association (Thorndike, 1911).

Within S-R theories, reinforcement can be regarded as the reward component of the state

that the response (or action) leads to. As such, the strength of an S-R association will be

proportional to the reward that an action entails in the future: actions that have led to higher

rewards in the past are more likely to be taken in similar situations (or similar states in RL

terms) in the future. In simple words, this form of learning implies that whenever an action

leads to reward, the agent marks that action as a good action, and then in the future, the agent
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takes the actions that have been marked as good actions, without necessarily knowing what

the exact consequence of those actions will be.

As such, similar to goal-directed instrumental actions, the agent will take the actions with the

highest values. However, the difference is that the values of actions are updated at the time of

experiencing the reward, while in the goal-directed case, the values of actions are calculated at

the choice points. In other words, during the formation of S-R associations, by experiencing a

reward after taking an action, the value of that action updates and becomes cached for future

use, while in the goal-directed case, values are calculated at the choice points. Since values of

actions are cached, they remain unchanged after off-line devaluation of outcomes, and hence

can be regarded as computational basis for the insensitivity of overtrained actions to outcome

devaluation (Daw et al., 2005).

One way of learning the cached values of actions is through model-free RL. The goal of model-

free RL is to learn the value of each action in each state, without learning the model of the

environment. Following (Watkins, 1989), we denote the value of action a in state s with Q(s, a).

Now, assume that an agent is in stage s, and performs action a and enters a new state s′, and

receives reward r . The amount of mis-prediction in the value of the action generates a reward

prediction error:

δ= r +V (s′)−Q(s, a) (2.12)

where V (s′) is the value of state s′, which is equal to the value of the best action in state s′.

Then, using this error signal, the value of the action adjusts as follows:

∆Q(s, a) ←αδ (2.13)

The above form of learning is called Q−learning (Watkins, 1989). There is another variant of

model-free RL, called SARSA (Sutton & Barto, 1998), in which the error signal is calculated

based on the value of the actual action that will be taken in the state s′, i.e., the error signal
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will be as follows:

δ= r +Q(s′, a′)−Q(s, a) (2.14)

where a′ is the action that will be taken in state s′. There is evidence in support of both forms

of learning in the brain (Morris, Nevet, Arkadir, Vaadia, & Bergman, 2006; Roesch, Calu, &

Schoenbaum, 2007).

As it is clear from the above equations, the learning process is similar to the model-free

Pavlovian conditioning, but the difference is that here, the values of actions are being learned,

while in the Pavlovian case the agent learns the value of states. Indeed, it is suggested that the

prediction error which is used in equation 2.13 is generated by the Pavlovian system. That is,

the prediction error that is generated by the Pavlovian model-free system is also sent out to

the instrumental model-free system for the purpose of learning the state-action values (Barto,

1995; Joel, Niv, & Ruppin, 2002). This form of learning is called actor-critic, in which an actor

selects and learns the value of actions, and a critic provides the error signal that adjusts action

values.

The information that reward prediction conveys is only regarding the reward component

of the outcome of actions and, thus, the identity of the consequence of actions will not be

represented during the learning process. The advantage of such a schema is that at the choice

points values are already calculated, and there is no need to deliberate over the consequence of

actions (as in the goal-directed process). However, choices will be insensitive to offline changes

in outcome values, since values are cached and updated only after the online experience of

actions. Due to this property of model-free RL, previous works have suggested that it is a

computational substrate for the insensitivity of overtrained actions to outcome devaluation

(Daw et al., 2005).

Evidence for model-free RL in the brain- As we will show in chapter 3, the model-free account is
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not the only way to explain insensitivity to outcome devaluation, therefore, further behavioral

or neural evidence is required to confirm the operation of the model-free RL behind choices.

One line of behavioral evidence can be provided based on the equation 2.13, which implies

that the effect of past rewards on current choices decays exponentially (with the rate of α).

This prediction has been confirmed in previous studies in humans, non-human primates,

and rodents (Lau & Glimcher, 2005; Sugrue, Corrado, & Newsome, 2004; Ito & Doya, 2009).

However, alternatively, it can be argued that a model-based learning algorithm can also predict

the same pattern; indeed, in equations 2.7 and 2.8, the effect of past experiences on the current

contingencies decreases exponentially, and since values are calculated using action-outcome

contingencies, the effect of past experiences on the current action values, and choices decays

exponentially, similar to the pattern predicted by model-free RL. Therefore, this behavioral

evidence alone is not sufficient to conclude that performance reflects the operation of model-

free instrumental conditioning.

Another line of evidence in support of model-free instrumental learning comes from the

connection between dopamine and the reward prediction error (equation 2.12). In fact,

similar to the Pavlovian conditioning, it is suggested that the phasic activity of dopamine

neurons code the prediction error, and serve as the teaching signal for the value of actions

(where in the Pavlovian case the signal was involved in learning the value of states). Causal

evidence in support of this hypothesis comes from studies showing that Parkinson patients,

who suffer from the degeneracy of dopamine neurons, are impaired in making optimal choices,

which can be recovered by the administration of L-DOPA (which is a dopamine agonist) (Frank,

Seeberger, & O’reilly, 2004; Bódi et al., 2009; Cools, Altamirano, & D’Esposito, 2006; Rutledge et

al., 2009). One notable feature of these experiments is that, subjects were presented with a

set of stimuli on the screen, and they were instructed to choose one of them, for example, by

pressing the corresponding button. Although this process can be interpreted as if subjects

are learning the value of actions, it is also consistent with the subjects learning the Pavlovian

value of states (stimuli). That is, subjects learn the Pavlovian value of the stimuli, and then

they evaluate actions in a model-based manner, and take the actions which correspond to
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the states with high values. As such, these experiments do not provide direct evidence for the

involvement of dopamine in learning the value of actions.

There is similar evidence from optogenetic studies in mice showing that, animals return to the

location in which they received stimulation of dopamine neurons in VTA (Tsai et al., 2009),

avoid locations in which the activity of dopamine neurons in ventral tegmental area (VTA)

was inhibited (Tan et al., 2012), and learn to nose-poke when nose-poking is followed by the

stimulation of dopamine neurons (K. M. Kim et al., 2012). In such experiments, the responses

that the animal presents can be seen as forms of the Pavlovian condition response (CR) (e.g.,

approaching the locations with high value), and thus the learning process can be interpreted in

terms of Pavlovian conditioning. There is another study in which animals needed to perform

an instrumental action in order to receive the stimulation (Adamantidis et al., 2011). This study

showed that animals preferred to take the action which delivered both food and stimulation,

over the action that only delivered food. However, similar to the experiments in Parkinson’s

patients, it can be argued that here the stimulation increases the value of the ‘food state’

through a Pavlovian learning mechanism, which implies a high value for the goal-directed

action that led to the food (see (Domingos et al., 2011) for a similar experiment using water).

Thus, in summary, although there is behavioral and neural evidence for the involvement

of model-free instrumental conditioning, such evidence can mainly be explained using a

combination of model-free Pavlovian conditioning, and model-based instrumental condition-

ing process. The above argument, however, only implies that the mentioned effects can be

explained using model-based instrumental conditioning, and since such experiments are not

accompanied by tests such as outcome devaluation it cannot be claimed that the underlying

process is necessarily model-based RL.

2.4.3 Computational models: arbitration rules

In section 2.3.2 we argued that model-based RL provides a plausible computational substrate

for goal-directed actions. Also, as argued in section 2.4.2, previous authors suggest that
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model-free RL exhibits properties that can explain insensitivity to outcome devaluation.

Now, a remaining question to be answered is why decision-making is model-based early

in training, whereas later in training it becomes model-free (since actions will be insensitive

to outcome devaluation after overtraining). Here, it is suggested that a third system, the

arbitrator, coordinates the contribution of the systems to choice. That is, at each choice point,

the arbitrator selects one of the systems, or a combination of both systems, to control actions.

Several models have been previously suggested for how the arbitrator works (Daw et al., 2005;

Keramati et al., 2011; Pezzulo, Rigoli, & Chersi, 2013; Lee, Shimojo, & O’Doherty, 2014), that

we illustrate them in this section.

Within a normative perspective, the logic of the arbitrator, i.e, shifting from model-based to

model-free, should stem from the algorithmic properties of each process. In section 2.3.3 we

mentioned that model-based RL is generally expensive in terms of computational and space

complexity, while model-free RL has a lower space complexity, which is O(|S||A|) compared

to O(|S|2|A|) in model-based RL. This means roughly that the operation of the model-free

system requires less memory than model-based RL. An implication of this observation is

that, when the agent has memory constraints, it would be more beneficial to rely on the

model-free system (Otto, Gershman, Markman, & Daw, 2013; Otto, Raio, Chiang, Phelps, &

Daw, 2013). Similarly, the computational complexity of model-free learning is O(ln|A|) (if

Q-values are presented by a heap data structure), compared to model-based RL which has

a higher computational complexity of Ω(|S|2|A|). As such, the model-free approach will be

more appropriate when computational resources are limited, or decisions need to be made

under temporal constraints.

But neither space nor computational complexity are directly related to the shift to model-free

RL after extended training, since memory and temporal constraints are not manipulated

during the course of training. However, what might be underlying the shift to model-free RL is

sample complexity: model-based RL generally requires less amount of data to make optimal

choices in comparison to model-free RL (see (Li, 2009, p.82) for a discussion). As such, early

in training when data is limited, the agent uses model-based RL, while later in training when
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enough data exists, the agent uses model-free RL which is more efficient in terms of space and

computational complexity. Inspired by this argument, previous works have suggested several

arbitration rules for how and why the brain switches between model-free and model-based

decision-making modalities. Such arbitration rules can be divided into two classes, which we

will discuss in the following section.

Class I arbitration rules- In this class of arbitration rules (Keramati et al., 2011) (see also

(Pezzulo et al., 2013)), it is assumed that the choices made by the goal-directed process are

always better than the choices of the model-free system, i.e., the model-based process has the

perfect information about the environment, which is consistent with the assumption that the

model-based system has lower sample complexity. On the other hand, it is assumed that the

model-based system takes longer to calculate which action should be taken, which is again

consistent with the fact that model-based RL has a higher computational complexity. Based on

this, the arbitration rule becomes as follows: if the value of perfect information (VPI) provided

by the model-based system exceeds the opportunity cost of waiting for the time consuming

model-based approach, then the model-based system will control actions, otherwise, the

model-free system will control actions. The value of perfect information is equivalent to the

extra amount of reward that can be gained if the model-free system knows the exact values

of actions (by querying the model-based process). The opportunity cost of the slowness in

the model-based system can be quantified using the concept of average reward rate (R̄) (Niv,

2007). The average reward rate represents the amount of reward that the agent can gain in a

unit of time, and thus the opportunity time of waiting for model-based calculations will be R̄τ,

where τ is the time taken by the model-based process.

Within the above schema, early in training when the estimations of the model-free system

are inaccurate, the value of perfect information is high, and thus control will be goal-directed.

Later in training when the estimations of the model-free system become rather accurate, the

value of perfect information drops, and the model-free system dominates behavior. An impor-

tant property of this class is that, the information that the arbitrator relies on for choosing a

system to control actions, is solely based on the estimation of the model-free system, and the

34



2.4. Instrumental conditioning: automatic actions

model-based system is called only when it is required. This property allows an agent to exhibit

fast reaction times when relying on the model-free system.

Class II arbitration rules- This class of arbitration rules (Daw et al., 2005; Daw, Gershman,

Seymour, Dayan, & Dolan, 2011; Gläscher, Daw, Dayan, & O’Doherty, 2010; Lee et al., 2014)

assumes that there are conditions under which the values estimated by the goal-directed

process, i.e., model-based system, can be less accurate than the values estimated by model-free

RL. For example, if the available memory is limited the goal-directed process might sacrifice

the accuracy of the value computation for fitting the required computation in the available

memory. The model-free process, however, suffers less from such memory limitations, and

after sufficient training it eventually surpasses the model-based accuracy. This is in contrast

to the first class of arbitration rules, which assumed that the estimated values of the goal-

directed process are always more accurate than those of model-free RL. As such, in this class

of arbitration rules, the arbitrator receives inputs from both model-free and model-based

RL, and these inputs convey information about the accuracy of the estimates of each system.

Then, the arbitration allows each system to exert control over the actions proportional to the

certainty that they have about their decisions.

The major difference between this class of arbitration rules and the first class is that, in this

class, the goal-directed process is always engaged in decision-making, while in the first class,

the goal-directed process will only be engaged when required. In other words, in this class of

arbitration rules, even when the overt behavior is model-free, the model-based system is still

working behind the scene to feed its inputs into the arbitrator. (Keramati et al., 2011) showed

that the way in which class I arbitration rules conceptualize the arbitration is more consistent

with behavioral results.

2.4.4 Behavioral properties: action sequences

In the previous section we presented a property of automatic actions, which was their insen-

sitivity to outcome devaluation. In this section, we present another property of automatic

35



Chapter 2. Multiple forms of decision-making

actions, known as action chunking. Evidence shows that with practice, actions that are fre-

quently executed together concatenate to form action sequences (also known as action chunks,

macro actions, skills, tasks, sub-tasks or schema) which are then treated as a single response

unit (Book, 1908; Miller, Galanter, & Pribram, 1960; Pew, 1966) (see (Rhodes, Bullock, Verwey,

Averbeck, & Page, 2004) for a review). Within the domain of motor control, such action se-

quences can be a sequence of motor commands, as for example typing a new word for the

first time is a disjoint set of key presses (actions), while practice renders the whole set of key

presses as an integrated sequence of muscle contractions. More generally, actions within an

action sequence can be at a higher level than motor commands. For example, within the

area of executive functions, with practice, making a cup of tea becomes a sequence of actions

consisting of ‘boiling the water’, ‘adding sugar’, etc.

The problem of learning action sequences was called action syntax by Karl Lashley (1890-

1958), who is usually credited with pointing out the centrality of serial order learning in skilled

actions (Lashley, 1951). Lashley proposed a new theoretical point of view that rejected the

associative account of action sequence learning, called response chain theory (or associative

chain theory) (James, 1890). The response chain is basically an extension of the stimulus-

response learning theory (Guthrie, 1952; Hull, 1952), which postulates that within an action

sequence, the stimulation caused by an action triggers the next action in the sequence:

· · ·→ Ri → Si → Ri+1 → Si+1 → . . .

where action Ri causes stimulus Si , which then triggers Ri+1. Take for example typing the

word “are”. The response chain theory suggests that seeing the word “are”, triggers the action

of pressing key “a”; then, the feedback produced by pressing the key “a” (e.g., kinesthetic

feedback, or perhaps the sight of letter “a” in the screen) triggers pressing the next key (“r”),

and this process continues up to the end of the word.

In contrast to the response chain theory, Lashley postulated that all actions that are to be

executed are determined at the onset of an action sequence within a motor program (Keele,
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1968; Henry & Rogers, 1960). Lahsley provided three lines of evidence in support of his theory.

Firstly, he argued that during the performance of an action sequence, reaction times are

faster than can be attributed to the feedback received from previous actions. For example,

(Rumelhart & Norman, 1982) argued that the mean interval between key presses in world

champion typists is 60 milliseconds, which is close to the neural transmission time between

the spinal cord and the effector, and thus there is not sufficient room for the feedback to

guide actions. This argument, however, was based on the assumption that the minimum

reaction time for responding to kinesthetic stimulation is 100 milliseconds (Glencross, 1977),

whereas later evidence showed that reaction times can be faster than was initially thought

(e.g., (J. A. Adams, 1976)). Moreover, not all reaction times are so fast that they cannot be

explained based on the feedback received from previous stimuli (Bruce, 1994).

Secondly, Lashley provided evidence from a man with damaged nerves leading to his leg

(which caused anesthesia for the movements of his knee joint, although he was still able to

voluntarily move his leg) (Lashley, 1917), arguing that even in the absence of sensory feedback,

individuals are able to make motor movements. Again here one can argue that in this situation

the feedback can be provided using other senses (Bruce, 1994). The third line of argument is

structure of the errors in the production of action sequences, which is not consistent with the

response chain theory. For example, transposition errors during typing (e.g., typing "becuase"

instead of "because") is one of the most common errors, which cannot be explained easily

using response chain theory (Rumelhart & Norman, 1982).

Other evidence has also been found, that is more consistent with Lashley’s account than the

response chain account. Firstly, it is reported that the time required to initiate a sequence

of movements increases in proportion to the length and complexity of the action sequence,

which presumably indicates that the elements that are to be executed are prepared at the

beginning of the sequence. In a seminal study, (Henry & Rogers, 1960) asked subjects to

perform three different actions in response to a tone stimulus. In one portion of the study,

subjects were instructed to simply withdraw their hands; in the second portion of the study,

subjects were asked to make two rapid movements after they withdrew their hands. Finally, in
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the third portion of the study, subjects were instructed to make four hand movements after

hand withdrawal. The result of the study showed that, in the second portion of the study, the

reaction time to start responding was 23 percent greater than the first portion (simple hand

removal). Similarly, the reaction time to start responding, in the longest sequence was 31

percent greater than the simple hand withdrawal.

Other studies have reported results similar to the above study (e.g., (Klapp, 1995, 1977; Stern-

berg, Monsell, Knoll, & Wright, 1978; Verwey, 1994; Canic & Franks, 1989)). However, the

differences in initiation times of short and long sequences diminish with practice (Klapp, 1995;

Hulstijn & van Galen, 1983; Verwey, 1994, 1999; van Mier & Hulstijn, 1993), which is taken

as a sign of the development of motor chunks (Brown & Carr, 1989; Klapp, 1995), i.e., with

practice, the whole sequence of movements is encapsulated within a motor chunk that can be

programmed as a single unit during the initiation of an action sequence.

The second line of evidence supporting Lashley’s argument comes from neurological studies.

Averbeck and colleagues (Averbeck, Chafee, Crowe, & Georgopoulos, 2002; Averbeck, Sohn,

& Lee, 2006; Averbeck, Chafee, Crowe, & Georgopoulos, 2003) trained monkeys to perform

a sequence of strokes to draw a predetermined geometric shape. For example, in a sample

trial, a monkey was shown a triangle, and was then required to draw a triangle using a joystick.

Within this example, the action sequence is composed of three actions, each corresponding

to drawing one edge of the triangle (there were four different shapes in the experiment).

Recordings from neurons in area 46 of the pre-frontal cortex of the animals, revealed that,

at the onset of the sequence of strokes (before the animal started to draw the shape), each

element of the action sequence to be executed was represented in the brain. In addition to

this, the activity of the representation of each action, corresponded to the order of that action

in the sequence, i.e., the action with the highest representation activity was the first action to

be executed, and this representation was deleted after the action was executed. Such findings

are more consistent with Lashley’s conception of action sequences than with response chain

theories. However, regarding the interpretation of this experiment, one can claim that the

neural activity reflects the sub-goals to be met (e.g., drawing each edge of the shape), rather
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than the sequence of actions (e.g., arm movements in this example), as indicated with some

studies (Mushiake, Saito, Sakamoto, Itoyama, & Tanji, 2006; Saga, Iba, Tanji, & Hoshi, 2011;

Shima, Isoda, Mushiake, & Tanji, 2007).

We will review more behavioral properties of action sequences in section 3.1 within the context

of the development of a new model for learning action sequences.

2.4.5 Computational models: hierarchical RL

Theoretical perspectives on action sequences have a long history (e.g., (Estes, 1972; Rumelhart

& Norman, 1982; Grossberg & Pearson, 2008; Cooper & Shallice, 2006; Botvinick, Niv, & Barto,

2009; Nakahara, Doya, & Hikosaka, 2001; Helie, Roeder, Vucovich, Rünger, & Ashby, n.d.;

Solway & Botvinick, 2012; Ito & Doya, 2011). See for a review (Botvinick, 2008)), and one of the

most recent forms is borrowed from the computational theory of hierarchical RL (Botvinick,

2008). This theory has the appealing property that it can be readily integrated with model-

based RL (which corresponds to goal-directed actions), and besides that, it is simple and

benefits from a sound theoretical foundation. Based on this, in the following, we present a

review of hierarchical RL, and in the next chapters, we will be using it for model development

and simulation.

As mentioned in section 2.3.3, model-based RL is not efficient in environments with high

numbers of states and actions, and therefore, it is not scalable to complex environments.

Hierarchical RL offers a solution to this problem by introducing the notion of extended actions

or temporally extended actions. Temporally extended actions are actions that take more

than one time step to complete. This is in contrast to the model-based and model-free

reinforcement learning frameworks that we presented in 2.3.2 and 2.4.2, in which an action

only took one time step to finish. The concept of temporally extended actions is close to the

notion of action sequences in psychology, and this is why hierarchical RL provides a suitable

framework for studying action sequences.

In order to incorporate temporally extended actions into RL, we need to extend the notion of
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MDPs (introduced in section 2.2) to semi-MDPs (SMDP), in which transition from one state

to another state can take more than one time step. As such, instead of the transition model

being P (s′|s, a) it will be P (s′,τ|s, a), which represents the probability of reaching state s′ after

the time step of τ, if action a was taken in state s. Within an SMDP, some actions can take

more than one time step to finish, while others can take only one time step to finish, similar

to MDPs. Actions that take one time step to finish are called primitive actions, as opposed to

temporally extended actions. Given an SMDP, the role of a hierarchical RL agent is to take the

course of action (either primitive or temporary extended actions) that maximizes the long-run

expected cumulative reward. To achieve this aim, several frameworks have been suggested

previously, such as options formalism (Sutton, Precup, & Singh, 1999), the HAMQ approach

(Parr & Russell, 1998), and the MAXQ value decomposition (Dietterich, 2000). We will be using

the options framework, due to its simplicity and popularity, and it will be presented in the

next section.

Options framework- A commonly used environment for the study of hierarchical RL is depicted

in Figure 2.5. The environment consists of four rooms, which are connected through hallways.

An agent is randomly initialized in one of the cells in the top-left room, and it can move to

other cells by taking actions. There are four primitive actions that the agent can take (left,

right, top, down), which move the agent to the corresponding cells in a stochastic manner.

The agent will receive a reward whenever it reaches the goal (‘G’ in the figure). In addition to

the primitive actions, at each cell, the agent can also select from the two options that take it to

the hallways of the current room. For example, if the agent is in the top-left room, one of the

options takes it to the right hallway, and the other option takes it to the bottom hallway (there

are eight options in total). Executing each option takes more than one time step, and thus,

options play the role of temporary extended actions. One way of thinking about options is

that they are solutions to sub-problems. For example, in the four-room task to reach the goal,

the agent first needs to reach a hallway (sub-problem), which can be achieved by executing

the appropriate option.

More generally, an option o is defined with three properties o = 〈I o ,πo ,βo〉. I o is called the
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G

A

Figure 2.5 – The four-room environment, which is used for studying hierarchical RL. Solid
arrows show primitive actions (left, right, up, down), and dashed arrows show available
options.

initiation set, which is the set of states in which option o can be initiated. πo is the internal

action-selection policy of the option, and defines how the option will be implemented at

the level of primitive actions. Finally, βo(s) is the termination condition of the option, which

defines the probability of the termination of the option upon entering state s.

Given a set of options and actions, the algorithm works as follows. In each state, the agent

evaluates the options that can be taken in that state, and it also evaluates the available primitive

actions in that state. If the agent chooses to run a primitive action, then it will execute that

action, and the process restarts in the next step. If the agent chooses to run an option, then

the option will start to select primitive actions according to its internal policy (π(s)) until it

terminates. At each step, the option will be terminated with a certain probability. For example,

in the above scenario, the options will be terminated whenever the agent reaches the intended

hallway. In addition to such conditions (e.g., reaching the intended goal of executing the

option), there is usually one more condition in which an ongoing option can be terminated.

That situation occurs when, during the execution of an option, the agent realizes that there is

a primitive action which has a higher value than continuing the option. For example, in the

four-room scenraio, assume that an agent is in the top-left room, and starts an option in order

to reach the eastern hallway. However, due to the unpredictability of the environment, after

executing several actions, the agent finds itself near the southern hallway. In this condition,

the agent terminates the ongoing option (to reach the eastern hallway), and exits the southern
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hallway.

Options, from the respect that they are composed of several primitive actions, correspond to

the concept of action sequences in psychology. The difference, however, is that the execution

of options is based on the states of the environment, but the execution of action sequences

can be independent of the state of the environment, as discussed by Lashley. We will discuss

this issue in more detail in chapter 3. The second parallel is between the concept of option

termination, and the inhibition of action sequences. As we will discuss in the next chapters,

in certain conditions, the execution of an ongoing action sequence might be inappropriate,

meaning that the action sequence should be terminated, which is conceptually similar to the

termination of options.

model-based hierarchical RL- In the previous section we introduced the concept of options.

Given a set of options and primitive actions, a remaining question is how an agent evaluates

and selects actions. In principle, similar to primitive actions, options can be evaluated in both

a model-based and model-free manner. In the next chapters of the current thesis, we will

argue that a framework in which options and actions are evaluated in a model-based manner,

provides a parsimonious explanation for the multiple forms of decision-making processes.

Such a framework is called hierarchical model-based RL, which as its name implies, includes

options (the hierarchical component), and evaluates actions in a model-based manner, i.e.,

an agent builds a representation of the model of the environment.

The representation of the model of the environment that the hierarchical model-based RL

builds, consists of two parts. The first part is similar to the representation of the model-based

RL introduced in section 2.3.2, i.e., an agent learns the transition function of the primitive

actions (p(s′|s, a)), and also the reward of each state (R(s)). The second part involves learning

about options, and has three components: (i) discovering options, i.e., learning how primitive

actions can be organized in the form of useful options, (ii) learning the outcome of each option

after discovering them, i.e., to which state each option leads to (p(s′|o, a)), and (iii) learning

the total reward earned during the execution of the option (R(o)). R(o) summarizes all the
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events that happen during the execution of an option, in terms of the amount of rewards

earned.

By building a representation of the environment, an agent can perform a tree search in order

to select actions. In the case of primitive actions, this search is similar to the flat model-based

RL (section 2.3.2). In the case of options, their value is composed of the value of the final

state that the option leads to, and the amount of reward that can be earned during the option

execution, which can be correspondingly calculated using p(s′|s, a), and R(o):

Q(s,o) = R(o)+∑
s′

P (s′|s,o)V (s′) (2.15)

where Q(s,o) is the value of execution option o in state s. It is important to note that the

term R(o) represents the total reward earned during the execution of the option, without

representing the actual states visited during the execution of that option5. In particular, since

for the evaluation of the options, the states visited during the option execution are not con-

sidered individually, then off-line changes in the values of these middle states will not reflect

on the values of the options that pass them. As we will discuss in the subsequent chapters,

this property can render decisions insensitive to outcome devaluation, a characteristic of

automatic actions.

There are two theoretical points worth mentioning regarding the utility of using options. The

first one is regarding whether using options speeds up learning, i.e, how adding options to the

learning algorithm affects the sample complexity of the algorithm. Experimental (Jong, Hester,

& Stone, 2008) and theoretical (Brunskill & Li, 2014) studies indicate that adding options can

potentially increase the speed of learning, depending on whether options are available in all,

or a sub-set of states. In fact, it can be shown that in the four-room environment, if the agent

is allowed to choose an option in all of the states, then the performance of the agent will be

5R(o) in fact summarizes events that have occurred during the execution of option o. However, one can imagine
other ways to summarize events that have occurred during the execution of option o. For example one can
assume that a quantity called S(o) tracks the probability of visiting each state during the execution of option o (i.e.,
cached states). Here, consistent with the current formulation of the options framework we assume that the agent
represents R(o).
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even worse than an agent without options (Jong et al., 2008). For example, if the agent is near

the goal, choosing to run an option will stop the agent from reaching the goal, because it will

take the agent to the hallways which are far from the goal. However, in the rooms other than

the goal room, using options can be beneficial. Similarly, theoretical results also suggest that

using options can improve the sample complexity of the learning algorithm, if the options are

available in a limited number of states, and in the rest of the states, only primitive actions are

available.

The second theoretical point is how adding options changes the computational complexity of

the learning algorithms. In discrete MDPs, there are some indications that using options can

facilitate the tree-search value computation (He & Brunskill, 2011), however these results are

restricted to the condition that only options can be selected by the agent (and not primitive

actions) (see (Mann & Mannor, 2014) section 1 for a brief review, and a generalization of the

results to the case of continuous MDPs). However, restricting the agent to select only options,

can lead to sub-optimal policies, since for example achieving a goal might need utilizing fine-

grain actions in addition to the options. As such, the utility gained by using options depends on

the states in which options are available, and whether options augment the space of primitive

actions or whether they replace primitive actions. In addition, how options are discovered,

i.e., how primitive actions form an option, can also affect the performance of the learning

algorithm. Obviously, if the options match the hierarchical structure of the environment, then

they will benefit the agent in reaching its goals, otherwise, they might hinder performance. In

chapter 3 we will introduce a new method for discovering action sequences.

2.4.6 Neural substrates

Previous studies have implicated several brain regions in the computational processes involved

in decision making (model-based Pavlovian, model-free Pavlovian, model-based instrumental,

model-free instrumental)(see for example (Balleine, Delgado, & Hikosaka, 2007; Dolan &

Dayan, 2013) for reviews). Here, we will review the neural substrates that are more relevant to

the current thesis. First, we briefly review the role of dopamine in automatic actions, and then,
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we will review the role of striatal sub-regions in each form of automatic actions.

2.4.6.1 Role of dopamine

Insensitivity to outcome devaluation induced by over-training has been shown to depend on

the ascending nigrostriatal dopamine pathway in rats (Faure, Haberland, Condé, & El Massioui,

2005), and the expression of NMDA receptors on dopamine neurons in mice (Wang et al.,

2011). Dopamine has also been implicated in the operation of action sequences. Evidence sug-

gests that the administration of a dopamine antagonist disrupts the chunking of movements

into well-integrated sequences (in capuchin monkeys) (Levesque et al., 2007), which can be

reversed by the co-administration of a dopamine agonist (Tremblay et al., 2009). In addition,

motor chunking appears not to occur in Parkinson’s patients (Benecke, Rothwell, Dick, Day, &

Marsden, 1987) due to a loss of dopaminergic activity in the sensorimotor putamen, which

can be restored in the patients on L-DOPA (Tremblay et al., 2010). The computational role that

dopamine plays in the formation of action sequences is unclear, and in chapter 3 we develop a

model for learning action sequences, which is based on the reward prediction error, and thus

provides a basis for understanding the role of dopamine in learning action sequences.

2.4.6.2 Striatal sub-regions

While overtraining causes performance to become insensitive to outcome devaluation, lesions

of the dorsolateral striatum (DLS; the sensorimotor striatum in rats) reverse this effect render-

ing performance once again sensitive to devaluation treatments (Yin et al., 2004). Likewise,

muscimol inactivation of DLS has been found to render otherwise habitual performance,

sensitive to changes in the action–outcome contingency (Yin, Knowlton, & Balleine, 2006).

There are similar reports in humans showing the involvement of sensorimotor putamen in

automatic actions (Tricomi et al., 2009; Wunderlich, Smittenaar, & Dolan, 2012).

Similarly, inactivation of the sensorimotor striatum disrupts the expression of previously

learned motor sequences (Miyachi, Hikosaka, Miyashita, Kárádi, & Rand, 1997), and learning

45



Chapter 2. Multiple forms of decision-making

new sequences (Yin, 2010). In humans, the blood oxygen level dependent activity in the

sensorimotor putamen is correlated with the concatenation of action sequences (Wymbs,

Bassett, Mucha, Porter, & Grafton, 2012), and the stage of training in action sequence learning

(Lehéricy et al., 2005; Jueptner, Frith, Brooks, Frackowiak, & Passingham, 1997). Neural

firing patterns recorded in rat’s DLS have been reported to mark the start and end of action

sequences in T-maze navigation (Thorn, Atallah, Howe, & Graybiel, 2010), and sequences of

lever presses (Jin & Costa, 2010; Jin, Tecuapetla, & Costa, 2014). Furthermore, it is reported that

most of the striatal neurons that were more active during the performance of a learned action

sequence, were in the sensorimotor striatum, whereas neurons in the associative striatum

responded more strongly to the performance of a new action sequence (Miyachi, Hikosaka, &

Lu, 2002).

For example, (Jog, Kubota, Connolly, Hillegaart, & Graybiel, 1999) over trained rats in a T-

maze and found that, as the component responses performed between the start and end

points of the maze declined in latency, the neural activity in sensorimotor striatum specific

to those points also gradually declined, to the extent that task-related activity was limited

to the first and last responses in the maze, i.e. the points at which any response sequence

or chunk should have been initiated and terminated. Similar effects have been observed by

(Barnes, Kubota, Hu, Jin, & Graybiel, 2005) and in fact, using response reversals, they were

also able to observe a collapse of the sequence, i.e. both the inter-maze responses and the

neural activity initially associated with those responses, reemerged along with task-irrelevant

movements. The inter-maze responses again declined with continued training post-reversal.

Hence, changes in both striatal unit activity and incidental behavioral responses tracked the

development of the sequence, as has been observed recently using a homogeneous sequence

of lever press responses, described above (Jin & Costa, 2010), and in a head movement habit

(Tang, Pawlak, Prokopenko, & West, 2007). Finally, (Kubota et al., 2009) reported observ-

ing electrophysiological effects associated with both the overall response sequence and the

component response primitives as these were rapidly remapped onto new stimuli presented

during the course of T-maze performance, suggesting that the mice (in this case) maintained
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separate representations of the sequence and component movements. Interestingly, Redish

and colleagues (Schmitzer-Torbert & Redish, 2004; A. Johnson, van der Meer, & Redish, 2007)

reported neural signals in the striatum associated with sequence learning in a novel navi-

gation task composed of a series of T-mazes reordered across days. Striatal activity differed

across different sequences of turns in the maze, but was also highly correlated across repeated

sequences suggesting, again, the co-occurrence of movement-specific and sequence-specific

activity in the striatum.

Thus, in summary, there are considerable similarities between the neural structures mediating

various forms of automatic actions, in terms of both striatal sub-regions and the role of

dopamine. The role of the sensorimotor striatum in action sequences, however, is not without

controversy (Turner & Desmurget, 2010). For example, inactivation of the globus pallidus

internus - the principal output of the sensorimotor striatum - does not increase the reaction

time in the ‘sequential trials’ of the sequential reaction times task (SRTT), which suggests that

the performance of action sequences is not dependent on the sensorimotor striatum. However,

the execution of sequence-based actions (as opposed to encoding) may not be dependent on

the sensorimotor striatum. In fact, based on this assumption, a neurocomputational model

has recently been developed (Helie et al., n.d.), in which the role of the basal ganglia is to train

the cortical-cortical connections that mediate sequence production. The model has shown to

be able to account for the data of (Desmurget & Turner, 2010) as well as some other aspects of

sequence learning.

2.5 Summary

In this chapter we introduced different forms of decision-making processes in the brain: (i)

Pavlovian conditioning and its two variants corresponding to model-based and model-free

value learning, and (ii) instrumental conditioning, which can be in the form of goal-directed or

automatic actions. We further presented three variants of RL models (model-based RL, model-

free RL, and hierarchical RL), and provided behavioral and neural evidence in support of each
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model. In the next chapter, we look closer at the behavioral and computational properties

of hierarchical RL, and investigate their implications for insensitivity of automatic actions to

outcome devaluation, contingency degradation, and action sequence learning.
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3 Hierarchical decision-making:

learning action sequences

In the previous chapter, we showed that insensitivity to outcome devaluation, and contingency

degradation are two important aspects of automatic actions, which are attributed to model-

free RL in previous works. In addition, we mentioned that action chunking is also an important

aspect of automatic actions, which has been linked to hierarchical RL. In this chapter, we

show that these two categories of automatic actions can be explained coherently using a

hierarchical RL model. After reviewing some behavioral properties of action sequences, we

develop a new normative model for learning action sequences and their interaction with

goal-directed processes. Finally, we show how the new model can account for a typical

sequence learning experiment, as well as outcome devaluation and contingency degradation

experiments.

3.1 Open-loop performance of action sequences

The flexibility of goal-directed actions reflects, the need for immediate, or at least rapidly

acquired, solutions to new problems and, indeed, evidence suggests that in novel environ-

ments there is a strong tendency for animals to generate behavioral variation and to resist

immediately repeating prior actions or sequences of actions (Neuringer, 2004; Neuringer &

Jensen, 2010). Of course, the need to explore new environments requires behavioral variation;
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once those solutions are found, however, exploiting the environment is best achieved through

behavioral stability, i.e. by persisting with a particular behavioral response. It is important

to recognize that, with persistence, actions can change their form, often quite rapidly. Errors

in execution and the inter-response time are both reduced and, as a consequence, actions

previously separated by extraneous movements or by long temporal intervals are more of-

ten performed together and with greater invariance (Willingham, Nissen, & Bullemer, 1989;

Buitrago, Ringer, Schulz, Dichgans, & Luft, 2004; Buitrago, Schulz, Dichgans, & Luft, 2004).

With continuing repetition these action elements can become linked together and run off

together as a sequence, i.e. they can become chunked (Terrace, 1991; Graybiel, 1998). Practice

appears, therefore, to render variable, flexible, goal-directed actions into rapidly deployed,

relatively invariant, components of action sequences, suggesting that an important way in

which the form of a goal-directed action can change as it becomes habitual is via the links that

it forms with other actions to generate sequences (section 2.4.4).

The most important feature of sequence learning is the interdependency of actions (Shah, 2008).

Through the process of sequence learning, action control becomes increasingly dependent

on the history of previous actions and independent of environmental stimuli, to the point

that, given some triggering event, the whole sequence of actions is expressed as an integrated

unit. Take, for example, a typical sequence-learning experiment such as the serial reaction

time task (SRTT; (Nissen & Bullemer, 1987)). In this task a subject is required to elicit a specific

action in response to a specific cue. For example, cues can be asterisks that are presented on a

computer screen, and the corresponding responses require the subject to press the keys that

spatially match the cues’ positions that can appear in either a random or sequential order. In

the sequential trials condition, the position of the cues is repeated in a pattern such that the

position of the next stimulus can be predicted given the previous one. In the random trials

condition, stimuli are presented in random order and, thus, given the previous stimuli, the

next one cannot be predicted.

On a simple conception of the learning process in the SRTT, the subject takes an action and, if

it is successful, the association between that action and the cue strengthens. Then, the subject
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3.1. Open-loop performance of action sequences

a)

b)

Figure 3.1 – (a) A closed-loop control system. After the controller executes an action it receives
cues regarding the new state of the environment and a reward. (b) An open-loop control
system in which the controller does not receive feedback from the environment. SRTT, serial
reaction time task.

.

waits for the next cue, and takes the action that has the strongest association with the cue.

From a control theory point of view, this learning process can be characterized as a closed-

loop control system in which, after each response, the controller (here the subject), receives

a feedback signal from the environment to guide future actions. In the SRTT, after taking

an action the subject receives two types of feedback: reward feedback and state feedback.

Reward feedback is the reward received after each response, for example, a specific amount of

juice, and is used for learning stimulus–response associations. State feedback is given by the

presentation of the next cue after the response that signals the new state of the environment,

and is used by the subject to select its next action. The term closed-loop commonly refers

to the loop created by the feedback path (Figure 3.1a). In the absence of this feedback, the

control system is called open-loop (Figure 3.1b; (Astrom & Murray, 2008)), according to which

the actions that the subject takes are not dependent on the presented cues or the received

rewards.

Clearly, closed-loop control is crucial for learning. Without feedback, the agent cannot learn

which response is correct. It also needs state feedback from the environment because the

correct response differs in each state and, as such, without knowing the current state, the agent

cannot make the correct response. However, in the sequential trials condition of the SRTT,
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Chapter 3. Hierarchical decision-making: learning action sequences

the subject could potentially maintain a high level of performance without using the state

feedback; indeed, evidence suggests that is exactly what they do in accord with open-loop

control. Reaction time, defined as the time between the stimulus onset and the onset of the

behavioral response, is the primary measure in the SRTT. Evidence from rodents (Schwarting,

2009), non-human primates (Hikosaka, Rand, Miyachi, & Miyashita, 1995; Matsuzaka et

al., 2007; Desmurget & Turner, 2010) and humans (Nissen & Bullemer, 1987; Keele, Ivry,

Mayr, Hazeltine, & Heuer, 2003) suggests that, after training, reaction times are shorter in

the sequential trials than the random trials condition. In fact, if the subject is permitted to

respond during the inter-trial delay, then the reaction time can even be negative, i.e. the next

action is often executed before the presentation of the next stimulus (Matsuzaka et al., 2007;

Desmurget & Turner, 2010). (Matsuzaka et al., 2007) reported that, with increasing training,

the number of these predictive responses increases up to the point that in almost all trials, the

subject responds in a predictive manner without the visual cue (see also (Miyashita, Rand,

Miyachi, & Hikosaka, 1996), indicating that the number of predictive responses increases as a

sequence becomes well learned (see also (Carr & Watson, 1908) for a similar phenomenon in

maze navigation).

The occurrence of very short or negative reaction times in sequential trials implies that, after

sufficient learning, selection of an action is mostly dependent on the history of previous

actions and less dependent on the external stimuli (visual cues). In fact, even if the subject

does not respond predictively before stimulus presentation, it is clear that the decision as to

which action to take on the next trial is made before stimulus presentation. In a sequential

button-push task, (Matsumoto, Hanakawa, Maki, Graybiel, & Kimura, 1999) trained a monkey

to execute a series of three button pushes in response to illumination of the buttons in a fixed

cued sequence. After training, the monkey was tested in a condition in which the third button

in the sequence was located in a position different from its position during training. They

found that, during the first and sometimes the second trial, the monkeys would continue to

push the third button of the learned sequence even if one of the other targets was illuminated.

Similarly, (Desmurget & Turner, 2010) reported when the first stimuli of a random trial followed,
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3.1. Open-loop performance of action sequences

by coincidence, the pattern of stimuli from a learned sequence, the animal responded as if the

next stimuli will be drawn from the learned sequence.

It appears, therefore, that, during the first stages of training, the subject learns the association

between cues and responses. At this stage, action selection is under closed-loop control

and relies on the observation of the cues. In the case of random trials, action selection

remains closed-loop through the course of learning. In sequential trials, however, with further

learning, action selection switches to open-loop control in which the execution of successive

actions is not related to the current state of the environment, something that leads to the

expression of action chunks (section 2.4.4). When actions are expressed in chunks, both state

identification, based on visual cues, and action evaluation appear to be bypassed. (Endress

& Wood, 2011), for example, note that successful sequence learning requires view-invariant

movement information, i.e. rather than depending on the relation between visual cues and

movement information in allocentric space, as goal-directed actions do (Willingham, 1998),

sequential movements appear to depend on position-based encoding in egocentric space.

Hence, chunked in this way, the performance of sequential movements is largely independent

of environmental feedback, allowing for very short reaction times in the open-loop mode.

Another line of evidence consistent with the cue-independency notion of habitual (automatic)

behavior comes from place/response learning tasks in animals (Tolman, Ritchie, & Kalish,

1946; Restle, 1957). In this type of task, rats begin each trial at the base of a T-maze surrounded

by environmental cues (e.g. windows, doors), and are trained to find food at the end of one

arm (e.g. the right, or east, arm). Following this training period, they are given probe tests

in which the maze is rotated 180 (with respect to the cues), and thus the start point will be

at the opposite side of the maze. Results show that after moderate training, at the choice

point the animal turns in the opposite direction to that previously learned (i.e. towards the

west arm; place strategy), suggesting that action control is state-dependent and based on the

environmental cues (closed-loop action control). However, after overtraining, rats switch and

at the test they take the same action that they learned in the initial training (i.e. they turn right;

a response strategy), indicating that overtraining renders action selection at the choice point
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independent of the environmental cues and the state identification process (open-loop action

control; (Ritchie, Aeschliman, & Pierce, 1950; Packard & McGaugh, 1996)).

Similarly, in more complex mazes in which a sequence of actions is required to reach the

goal, removal of environmental cues does not affect performance of a learned sequence of

egocentric movements (body turns), but disrupts the use of a place strategy (Rondi-Reig

et al., 2006). Learning the maze in a cue-deficient environment, but not in a cue-available

environment, in which decision-making should minimally rely on state-guided action control

is impaired by inactivation of sensorimotor striatum (Chang & Gold, 2004). Few studies have

addressed functional differences between the sensorimotor striatum and associative striatum

in place/response learning; however, in general it seems that the associative striatum is

involved in goal-directed decision-making (the place strategy), and the sensorimotor striatum

is involved in habitual responses (the response strategy; (Devan & White, 1999, 1999; Yin et al.,

2004; Moussa, Poucet, Amalric, & Sargolini, 2011)), consistent with the role of these striatal

sub-regions in instrumental conditioning (section 2.4.6.2) and SRTT.

Based on the mentioned similarities in neural and behavior aspects of increasing automaticity

in SRTT (sequential trials), maze learning and instrumental conditioning (insensitivity to

outcome devaluation and contingency degradation), we assume that action sequence forma-

tion is the underlying process of these modalities of habitual behavior. In order to formalize

this assumption, in the next section we use RL to provide a normative approach to modeling

changes in performance during action sequence learning. Next, in section 3.5 we show how

this model applies to the different forms of habitual behavior.

3.2 Average reward RL

A typical RL agent utilizes the following components for the purpose of learning and action

selection: (i) state identification – the agent identifies its current state based on the sensory

information received from its environment (e.g. visual cues); (ii) action selection – given

its current state, and its knowledge about the environment, the agent evaluates possible
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3.2. Average reward RL

actions then selects and executes one of them; (iii) learning – after executing an action, the

agent enters a new state (e.g. receives new visual cues) and also receives a reward from the

environment. Using this feedback, the agent improves its knowledge about the environment.

This architecture is a closed-loop decision-making process because the action-selection

process is guided by the current state of the agent, which is identified based on sensory inputs

received from the environment. As we discussed in the previous section, action selection

in sequence learning is not guided by environmental stimuli, and so does not require a

state identification process. To explain sequence learning, therefore, we need to modify

this framework. In the following sections we will introduce a mixed open-loop/closed-loop

architecture for this purpose. Before turning to that issue, we shall first take a closer look at

the learning process in RL.

Assume that an agent is in state s, in which there is a set of possible actions, and the agent

selects one of them for execution, that we denote with a. The agent spends d time steps

in state s (commonly referred to as the state dwell time) and, after that, by taking actions a,

it enters a new state, s′ and receives reward r . The next state of the agent, the amount of

reward received after taking an action, and the state dwell times, depend on the dynamics of

the environment, which are determined, respectively, by the transition function, the reward

function and transition time function. The transition function, denoted by p(s′|s, a) indicates

the probability of reaching state s′ upon taking action a in state s. R(s) denotes the reward

function, which is the amount of reward the agent receives in state s. Finally, D(s), the

transition time function, is the time spent in state s (dwell time). The time that the agent

spends in a state is the sum of the time it takes the agent to make a decision, and the time it

takes for new stimuli to appear after executing an action.

The goal of the agent is to select actions that lead to a higher average reward per time step,

and this is why this formulation of the RL is called ‘average reward RL’ (Mahadevan, 1996;

Tsitsiklis & Roy, 1999; Daw & Tourtezky, 2000; Daw, 2002). This average reward, denoted by

R̄, can be defined as the total rewards obtained, divided by the total time spent for acquiring
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those rewards:

R̄ = r0 + r1 + r2 + . . .

d0 +d1 +d2 + . . .
(3.1)

If the environment is unchain1 (e.g., cyclic environment) then the average reward (R̄) will be

same for all the states. This condition holds for the cyclic environment that we discuss in this

chapter.

To choose an action amongst several alternatives, the agent assigns a subjective value to each

state–action pair. This subjective value is denoted by Q(s, a), and represents the value of taking

action a in state s (Watkins, 1989). These Q-values are learned such that an action with a

higher Q-value leads to more reward in a shorter time compared with an action with a lower

Q-value.

The first determinant of Q(s, a) is the immediate reward that the agent receives in s, which is

R(s). Besides the immediate reward the agent receives, the value of the next state the agent

enters is also important: actions through which the agent reaches a more valuable state are

more favorable. Thus, assuming that the agent reaches state s′ by taking action a, the value of

the next state, V (s′), is the second determinant of Q(s, a) and is assumed to be proportional to

the reward the agent gains in the future by taking its best action in the state s′. In general, for

any state s, V (s) is defined as follows:

V (s) = max
a

Q(s, a) (3.2)

The final determinant of Q(s, a) is the amount of time the agent spends in the state. If the agent

spends a long time in a state, then it will lose the opportunity of gaining future rewards. In

fact, losing D(s) time steps in state s is equal to losing D(s)R̄ that could potentially be accrued

in this time. Given these three determinants, the value of taking an action in a state can be

1Formally an environment is unchain if every state of the environment will be revisited eventually by probability
1, except for a finite (or empty) set of states which will never be visited after a certain point in time.
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computed as follows:

Q(s, a) = R(s)−D(s)R̄ +E [V ′(s)] (3.3)

where the expectation in the last term is over s’:

Q(s, a) = R(s)−D(s)R̄ +∑
s′

p(s′|s, a)V (s′) (3.4)

As the above equation implies, computing Q-values requires knowledge of the transition

probabilities, the reward functions and the state dwell times, which together constitute a

model of the environment. However, without a prior model of the environment, the agent can

estimate these quantities through its experience with the environment. For example, R(s) can

be estimated by averaging immediate reward received in state s. In the same manner, D(s)

can be computed as the average of waiting times in state s. An estimation of p(s′|s, a) can be

made by counting the number of times taking action a in state s leads to state s′. Given the

model of the environment, Q-values can be derived from equation 3.4 using dynamic pro-

gramming algorithms, such as value-iteration (Puterman, 1994; Mahadevan, 1996). Because

these methods of value computation rely on the model of the environment, they are called

model-based value computation methods. Using these state–action pairs, the agent can guide

its actions toward ones that lead to a higher average reward rate.

Returning to the overview of the decision-making process in RL, in (i) the agent identifies its

current state, s and then feeds state s into equation 3.4, allowing the value of different actions,

Q-values, to be computed. These Q-values guide the action-selection process, and the agent

takes the appropriate action (ii). By taking an action, the agent enters a new state, receives a

reward, and measures the time from entering the previous state, s, to entering the new state,

s′. Finally, using these quantities, the model of the environment is updated (iii).
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3.3 Action sequence formation

When an agent starts learning in a new environment all the decisions are based on model-

based action selection, i.e. after entering a new state, the agent computes Q-values using the

process introduced in the previous section and chooses one of the actions that tends to have

the higher Q-value. Under certain conditions, however, it may be more beneficial for the agent

to execute actions in a sequence without going through the action-selection process. First, we

discuss the process of sequence formation and, in the next section (section 3.4), how action

sequences interact with the model-based action selection.

We start by reviewing the environmental conditions in which action sequences form. Figure 3.2

shows three environments in which, by taking action A1 in state S, the agent enters state S′ or

S′′ with equal probability. In states S′ and S′′ two actions are available, A2 and A′
2. Figure 3.2a

provides an example of the kind of environment in which an action sequence forms, i.e. in

states S′ and S′′, action A2 is the best action. An example of this environment is the situation

in which pressing a lever (action A1) leads to the illumination of, say, a light (state S′) or a tone

(state S′′) with equal probability, both of which signal that by entering the magazine (action

A2), the rat can gain a desirable outcome, and by not entering the magazine (action A′
2) it

gains nothing. As a consequence, after taking action A1 in S the agent does not need to check

the upcoming state but can execute A2 irrespective of the next state, either S′ or S′′ (light or

tone). In this situation, actions A1 and A2 form an action sequence consisting of A1 and A2.

Hereafter in this chapter, we call these action sequences macro actions, and denote them, for

example, in this situation with {A1 A2}. Actions that are not macro, for example A1 or A2, are

called primitive actions.

Figure 3.2b shows a situation in which an action sequence does not form. In state S′, action

A2 is the best action, but in state S′′, action A′
2 is the best. In the context of the previous

example, illumination of the light indicates that by entering the magazine, the animal will gain

a desirable outcome; but presentation of the tone indicates that entering the magazine is not

followed by a desirable outcome. Here, after taking A1 in S, the animal cannot select an action
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Figure 3.2 – (a) An example of an environment in which action sequences will form. Action
A1 leads to two different states with equal probability, in both of which action A2 is the best
action, and thus action sequence {A1 A2} forms. (b) An example of an environment in which
action sequences do not form. Action A1 leads to two different states with equal probability,
in one of which action A2 is the best action and, in another, action A′

2 is the best action. As a
consequence, an action sequence {A1 A2} does not form. (c) An example of an environment in
which the process of sequence formation is non-trivial. Action A1 leads to two different states
with equal probability, in one of which action A2 is the best action, but in the other action A′

2
is the best action (although A2 is a little bit worse than A′

2).
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without knowing the upcoming state, and thus a macro action does not form.

Figure 3.2c shows a more challenging example. In state S′, A2 is the best action. In state S′′,

A2 is not the best action, but it is slightly worse than the best action, A′
2 (e.g. three drops of a

liquid reward, vs. two drop of liquid reward). Does a sequence form in this case? To answer

this question, we need a cost-benefit analysis, i.e. what the agent gains by executing actions

A1 and A2 in sequence and what it loses. Assume it decides to always execute A2 after A1. If

the next state is S′, then it loses nothing, because action A2 is the best action in state S′. But,

if the next state is S′′, by taking A2 instead of the best action, A′
2, the agent loses some of the

future rewards. The amount of these reward losses is equal to the difference between the value

of action A2, Q(S′′, A2), and the value of the best action, V (S′′), which will be Q(S′′, A2)−V (S′′),

that we denote by A(S′′, A2). A(S′′, A2) can be interpreted as the advantage of taking action A2

in state S′′ instead of the best action (Baird, 1993; Dayan & Balleine, 2002). In this example,

because the agent enters state S′′ after state S only half the time, the total cost of executing A1

and A2 in sequence will be 0.5A(S′′, A2).

Generalizing from the previous example, the cost of executing the macro action {aa′} in state

s is equal to:

C (s, a, a′) = E [Q(s′, a′)−V (s′)] = E [A(s′, a′)] (3.5)

where expectation over the next state, s′, given the previous action and the previous state, is:

C (s, a, a′) =∑
s′

P (s′|s, a)A(s′, a′) (3.6)

Using the above equation, the term C (s, a, a′) can be computed based on the model-based

approaches described. The agent computes Q(s′, a′) and V (s′) using equation 3.4, and then

C (s, a, a′) is calculated by equation 3.6. However, this means that at each decision point,

deciding whether to execute an action sequence, equation 3.6 should be evaluated for all

currently possible actions, and all possible subsequent actions. This will likely impose a heavy

processing load on the decision-making process, and could considerably increase the latency
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of action selection. It turns out, however, that C (s, a, a′) can be estimated efficiently using

samples of the temporal difference error signal (TD error signal).

Let’s assume that an agent is in state s′ and takes action a′ and reaches state s′′ and receives

reward r . Then the TD error signal experienced after taking action a′ in state s′ is defined as

follows:

δ= [r −dR̄ +V (s′′)]−V (s′) (3.7)

Based on equation 3.4, the term [r −dR̄+V (s′′)] is a sample of Q(s′, a′). Thus, δwill be a sample

of A(s′, a′)2, and hence C (s, a, a′) can be estimated using samples of the TD error signal. By

taking action a in state s, and action a′ in state s′, C (s, a, a′) will be updated as follows:

C (s, a, a′) ← (1−ηC )C (s, a, a′)+ηCαδ (3.8)

where ηC is the learning rate, and α is a factor, which equals 1 when the environment is

deterministic (see section 3.8 for more details). As mentioned above, extensive evidence from

animal and human studies suggests that the TD error signal is coded by the phasic activities of

mid-brain dopamine neurons (Schultz et al., 1997; Schultz, 2000). Thus, besides being more

efficient, utilizing the error signal for the purpose of sequence learning provides a neurally

plausible way for computing the cost of sequence-based action selection, C (s, a, a′).

Up to now, we have only considered one side of the trade-off, which is the cost of sequence-

based action selection. What are the benefits of sequence-based action selection? As discussed

in the previous section, expression of a sequence of actions is faster than selecting actions one

by one, based on the action evaluation process. This can be for several reasons; for example,

identification of the current state by processing environmental stimuli can be time consuming,

and the evaluation of actions using a model-based process is slower than having solely to

select the next action from the sequence. Besides being faster, executing actions without

2Note that we assumed that advantages (A) are calculated based on the value of the best action (V (s)), and not
based on the current policy.
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going through the decision-making process makes it possible to perform a simultaneous task

that requires decision-making resources. Here, we focus on the first advantage of sequence

learning.

Assume that selecting the next action of the current sequence is τ time steps faster than

selecting an action based on the action evaluation process. Saving τ time steps is equivalent to

gaining R̄τ more reward in the future (Niv, 2007). This provides the other side of the trade-off:

if the benefit of sequence-based action selection, R̄τ, exceeds its costs, −C (s, a, a′), then the

macro action {aa′} replaces action a in state s. Otherwise, if the macro action is already

formed, it decomposes to its constitutent actions, and action a replaces the macro action

{aa′}:

if −C (s, a, a′) < R̄τ then

replace action a with macro action {aa′} in state s

else

replace the macro action {aa′} with action a in state s

end if

After a macro action is added, it can be concatenated with other actions to form a longer

macro action. For example, macro action {aa′} can be concatenated with another action, say

a′′, and form the macro action {aa′a′′}. It is important to recognize that, during execution

of a macro action, primitive actions are not evaluated and thus the TD error signal is not

computed, which means the cost of the action sequence, C (s, a, a′), is not updated after it is

formed. This implies that a sequence should only form after the agent is certain about the

estimated costs and benefits of the sequence; otherwise, the agent could stick to a sub-optimal

sequence for a long period of time. This implies that action sequences should not form during

early stages of instrumental learning because a high degree of certainty requires sufficient

experience of the environment and hence more training time. In the current example, we did

not model the agent’s certainty about its estimations. Instead we assumed a large initial value

for the cost of sequence formation, and chose a slow learning rate for that cost ηC , something

that ensures sequences form only after the environment is well learned.
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Figure 3.3 – At state S, three actions are available: A1, A2, A3, where A1 and A2 are primitive
actions, and A3 is a macro action composed of primitive actions M1 . . . M4. If at state S, the
macro action is selected for execution, the action control transfers to the sequence-based
controller, and actions M1 . . . M4 become executed. After the termination of the macro action
control returns back to model-based decision-making at state S3.

3.4 A hierarchical model-based architecture

Assume that the agent is in state S in which several choices are available (Figure 3.3), two of

which are primitive actions (A1 and A2), and one of which is a macro action (A3). In state S

the agent uses model-based action evaluation, and selects one of the available actions for

execution, which can be either a primitive action or a macro action. After completion of a

primitive action the agent enters a new state in which it again uses a model-based evaluation

for selecting subsequent actions. However, if the selected action is the macro action, A3, its

execution is composed of taking a sequence of primitive actions (M1. . . M4). Nevertheless,

upon completion of the macro action, the agent identifies its new state (S3), and uses model-

based action evaluation again for selection of the next action.

The above scenario involves hierarchical model-based and sequence-based action control.

At the choice points, actions are selected based on the model-based evaluations. However,

during the execution of a sequence of actions, they are selected based on their sequential

order, without going through the evaluation process. As discussed in the previous section, this

sequence-based action selection can lead to higher average reward rates, in comparison to a

pure model-based decision-making system, which is the benefit of sequence-based action

selection. However, it can lead to a maladaptive behavior if the environment changes after
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action sequences have formed. For example, assume that after the macro action {aa′} has

formed, the environment changes so that the execution of action a′ after action a no longer

satisfies the cost–benefit analysis presented in the previous section - say the change causes the

value of the state to which action a′ leads to decrease significantly - as a consequence, taking

action a′ after action a will no longer be the best choice. If action control is sequence-based, it

is the previous action that determines the next action and not the consequences of the action.

Hence, the agent will continue to take action a′ even though it is not the most appropriate

action.

Ultimately, in this situation, we expect the macro action to decompose to its components so

that the agent can consider other alternative actions other than action a′. However, this does

not happen instantly after the environment has changed and, thus at least for a while, the

agent will continue behaving maladaptively. As mentioned in the previous section, after the

macro action has formed, its cost, C (s, a, a′), is not updated, because the system is working

on the open-loop mode and the TD error signal is not computed to update C (s, a, a′). As a

consequence, the cost side of the sequence formation trade-off is relatively insensitive to

environmental changes. The other side of the trade-off, R̄τ, however, is sensitive to environ-

mental changes: if the environment changes so that executing the macro action leads to a

decrease in the average reward the agent experiences, R̄, then this circumstance motivates

decomposition of the macro. In fact, this model predicts that, if the environmental changes

do not alter the average reward, then the agent will continue to take action a′ after a, even

if the change introduces better alternatives other than taking action a′. Nevertheless, if the

change causes a decrease in the average reward, then the macro action will decompose, and

the responses will adapt to the new situation. However, this cannot happen instantly after the

change because it takes several trials before the average reward adapts to the new condition.

The above feature of the model implies different sensitivity of sequence-based responses of the

model after an environmental change compared with the situation where responses are under

model-based control. As an example, in Figure 3.3 assume that the action A1 is the best action,

i.e. it has the highest Q-value among actions A1, A2 and A3, and so the agent takes action A1
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more frequently than the others. Now, assume that the environment changes, and the value of

the state that action A1 leads to (state S1) dramatically decreases. The next time that the agent

is making a decision in state S, it evaluates the consequences of action A1 using equation 3.4,

and finds out that A1 is no longer the best action, and adapts its behavior instantly to the new

conditions. Evidence for the effect of this type of environmental change on the behavior comes

from an experiment (Ostlund, Winterbauer, & Balleine, 2009) in which rats were trained on

two action sequences for two outcomes, i.e. R1→R2→O1 and R2→R1→O2. After this training,

either O1 or O2 was devalued, and performance of the two sequences (macro actions {R1R2}

and {R2R1}) were assessed in extinction. Results show that the performance of the sequence

that leads to the devalued outcome decreases, which implies that performance of a macro

action (e.g. {R1 R2}) is immediately sensitive to the value of the states to which it leads (O1).

Compare the above situation with one in which an environmental change causes a decrease

in the value of one of the states visited during a sequence, for example state S4. Here, a change

in the value of state S4 will not affect the value of action A3 (when evaluated at S). In fact,

one effect of chunking actions together and turning them into a single response unit is that

the representation of the action sequence is independent of its embedded individual actions

and their outcomes. Although this higher level representation of actions makes decision-

making easier and faster, it also renders the evaluation of action sequences insensitive both to

offline changes in individual action–outcome contingencies and to changes in the value of any

outcomes (states) delivered within the sequence boundaries (section 2.4.5). As such, although

the selection of an action other than A3 would be more optimal, A3 will be selected at state S.

After several trials, because taking action M2 does not lead to reward, the average reward that

the agent experiences decreases, and the sequence should then decompose into its elements.

At this point, the control of actions will return to the model-based system and choices adapt to

the new environmental conditions. In the next section we show that insensitivity to reinforcer

devaluation and contingency degradation is due to this type of environmental change.
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3.5 Simulations

Having described the model, we are now in a position to establish whether it can provide

an accurate account of: (i) sequence learning, such as that observed in SRTT; and (ii) instru-

mental conditioning, particularly the shift in sensitivity of instrumental actions to reinforcer

devaluation and contingency degradation during the course of overtraining (see section 3.8

for implementation details).

3.5.1 Sequential and random trials of sequence learning

As already noted, when a sequence of stimuli is predictable, such as in the sequential trials of

the SRTT, along with the progress of learning as a result of sequence-based action selection,

reaction times decline. In contrast, when the sequence of stimuli is random, as it is in the

random trials condition of SRTT, reaction times do not decrease substantially during the course

of learning. Here, we simulated the model described previously in a task similar to SRTT. After

each correct button press the model receives one unit of reward. In the sequential trials

condition, after each correct button press the next stimulus in a fixed sequence is presented,

otherwise the sequence restarts and the first stimulus is presented. Here, we assume that

the order of stimuli is S0 to S3, where the correct button press in S0 is B0, B1 in S1, etc. In the

random trials condition, the next stimulus is selected randomly. It is assumed that it takes 400

milliseconds (ms) to make a decision using the model-based method, and 100 ms to elicit a

response under sequence-based action control.

The temporal dynamics of sequence formation is depicted in Figure 3.4. After several learning

trials, the agent learns the model of the environment (the rewards in states, delays in states

and the consequences of each action) and, as a consequence, the probability of taking the

correct actions increases, which implies that the agent gains more rewards and, thus, the

average reward that the agent receives, R̄, increases. This increase in the average reward

implies that a significant number of the rewards that could have been gained in the future are

being lost due to time taken for model-based action selection, and this favors the transition of
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action control to the sequence-based method, which is faster. At the same time, the cost of

sequence-based action selection, C (S0,B0,B1) decreases (Figure 3.4a), which means that the

agent has learned B1 is always the action that should be taken after B0. Eventually, the benefit

of sequence-based action selection becomes larger than its cost and, at that stage, the macro

action {B0B1} replaces the B0 action (Figure 3.4b). Later, actions B2 and B3 form the macro

action {B2B3} and, finally, the two previously formed macro actions concatenate, and the

macro action {B0B1B2B3} is formed. In addition, as shown in Figure 3.4a, after a macro action

is formed the average reward that the agent gains increases due to faster decision-making.

Figure 3.4c shows the reaction times. As the figure shows, by forming new action sequences,

reaction times decrease up to the point that only selection of the action sequence is based

on model-based action control, and all subsequent button presses during the sequence are

based on sequence-based action control. Figure 3.4c also shows the reaction times in the

case of random trials, which remain constant largely because the sequence of stimuli is not

predictable and the cost of sequence-based action selection remains high so that no action

sequence forms (Figure 3.4d).

3.5.2 Instrumental conditioning

In this section, we aimed to validate the model in instrumental conditioning paradigms.

Figure 3.5a depicts a formal representation of a simple instrumental conditioning task. The

task starts in state S0 and the agent has two options: the press lever (PL) action; and enter

magazine (E M) action. By taking action PL, and then action E M , the agent enters state S0

in which it receives one unit of reward (r = 1). All other actions, for example taking action

E M before action PL, leads to no reward. Entering state S1 is cued for example by a ‘click’

produced by the pellet dispenser, or ‘buzz’ of the pump if sucrose solution is the reward. After

several learning trials, the agent learns the model of the environment; the value of the PL

action exceeds the value of action E M , and the probability of taking action PL increases. As

the probability of taking action PL increases, the agent gains more rewards and, hence, the

average reward R̄ increases. Simultaneously, the cost of sequence-based action selection
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Figure 3.4 – The dynamics of sequence learning in sequential and random trials of SRTT. (a, b)
As the learning progresses, the average reward that the agent gains increases, indicative of a
high cost of waiting for model-based action selection. At the same time, the cost of sequence-
based action selection decreases (top panel), which means that the agent has discovered the
correct action sequences. Whenever the cost becomes less than the benefit, a new action
sequence forms (bottom panel). The abscissa axis shows the number of action selections. (c)
Reaction times decrease in sequential trials as a result of sequence formation but they remain
constant in the random trials of SRTT because, (d) no action sequence forms. Data reported
are means over 10 runs.
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decreases, which means the agent has learned that action PL is always the action that should

be taken after the E M action and, as a consequence, the macro action {E M ,PL} replaces

the E M action (Figure 3.6a). From that point, the action PL is always taken after E M . In

addition to the {E M ,PL} action sequence, the other action sequence, i.e., {PL,E M } is also

presumably being formed by over-training, which together with {E M ,PL} will eventually form

a cyclic pattern of E M actions followed by PL actions. In the following section we will show

that the {E M ,PL} part of the cycle plays an important role in behavioral data observed after

over-training, and therefore we will focus on this component in the future sections.

The schematic representation in Figure 3.5a corresponds to a continuous reinforcement

schedule, in which each lever press is followed by a reinforcer delivery (e.g. (C. D. Adams,

1982)). However, in most experimental settings, animals are required to execute a number

of lever presses (in the case of ratio schedules), or press the lever after an amount of time

has passed since the previous reward delivery (in the case of interval schedules) in order to

obtain reward. One approach to analysing these kinds of experiments using the paradigm

illustrated in Figure 3.5a is through application of the ‘response unit hypothesis’ (Skinner,

1938; Mowrer & Jones, 1945), according to which the total set of lever presses required for

reward delivery is considered as a single unit of response. For example, in the case of fixed

ratio schedules, if 10 lever presses are required to produce reinforcement, the whole 10 lever

presses are considered as a single unit, corresponding to the action PL in Figure 3.5a. In ratio

schedules this hypothesis is supported by the observation that, early in learning, the animal

frequently takes the E M action, which, with the progress of learning, tends to occur only after

the last lever press (Denny, Wells, & Maatsch, 1957; Overmann & Denny, 1974; Platt & Day,

1979).

Following this training, animals are given an extinction test, in which rewards are not delivered.

During the course of extinction, the response unit mainly preserves its form and only the last

response is likely to be followed by the E M action (Denny et al., 1957). Further, the average

number of executed response units in extinction is independent of the number of lever presses

required for reinforcer delivery, indicating that the whole response unit is being extinguished,
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Figure 3.5 – Formal representation of instrumental conditioning tasks. (a) Instrumental
learning: by taking the press lever (PL) action, and then enter magazine (E M) action, the
agent earns a reward of magnitude one. By taking E M action in state S2 and PL action in state
S1, the agent remains in the same state (not shown in the figure). (b, c) Reinforcer devaluation:
the agent learns that the reward at state S0 is devalued, and then is tested in extinction in
which no reward is delivered. (d) Non-contingent training: unlike as in (a), reward is not
contingent on the PL action, and the agent can gain the reward only by entering the magazine.
(e) Omission training: taking the PL action causes a delay in the reward delivery, and the agent
should wait 6 seconds before it can gain the reward by entering the magazine.
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and not individual lever presses (Denny et al., 1957; Overmann & Denny, 1974; Platt & Day,

1979). In the case of interval schedules, because reinforcement of a lever press depends on the

time that has passed since the previous reward delivery, the ‘response unit hypothesis’ has to

be generalized to temporal response unit structures in which the animal continues to lever

press for a certain amount of time (instead of for a certain number of times), in the form of

‘bouts’ of lever pressing (Shull & Grimes, 2003), or nose poking (Shull, Gaynor, & Grimes, 2002).

In fact, in the previous section, in the course of analysing SRTT, we applied the ‘response unit

hypothesis’ by treating the action of pressing the button as a single response unit, which of

course can be broken into smaller units. Similarly, in the case of maze learning, the action of

reaching the choice point from starting point can be thought as a sequence of steps. Is the

formation of such response units (e.g. PL action composed of homogenous set of responses)

through the action sequence formation method proposed in the previous section, or do they

form in a level different from that in which macro action {E M ,PL} forms? We leave the answer

to this question for future works.

In the next two sections, we investigated the behavior of the model, based on Figure 3.5a,

when an environmental change occurs both before and after sequence formation.

3.5.2.1 Reinforcer devaluation before vs. after action sequence formation

As described above, in reinforcer devaluation studies, the value of the outcome of an action is

reduced offline through some treatment (such as specific satiety or taste aversion learning)

and the performance of the action subsequently assessed in extinction. There is a considerable

literature demonstrating that, with moderate training, instrumental performance is sensitive

to this change on value, whereas after more extended training it is not (cf. Figure 2.4).

To assess the accuracy of the model it was simulated using the procedure depicted in Figure 3.5.

The procedure has three steps. The first step (Figure 3.5a) is the instrumental learning phase,

described in the previous section. The next step (Figure 3.5b) models the devaluation phase in

which the model learns that the reward obtained in state S0 is devalued (r =−1). The third

71



Chapter 3. Hierarchical decision-making: learning action sequences

phase is the test conducted under extinction conditions, i.e. reward is not delivered in state

S0 (r = 0). The critical question here is whether the model chooses action PL in state S0. As

noted previously, experimental evidence shows that after moderate training, the agent chooses

action PL, whereas after extended training it does not. Figure 3.6b shows the probability of

taking action PL after moderate training (in this case after 3000 action selections). As the

figure shows, because action selection is under model-based control, when the reward in state

S0 is devalued, the value of taking PL action in state S0 is immediately affected and, as such,

the probability of taking action PL decreases.

The same is not true of overtrained actions. Figure 3.6c shows the sensitivity of responses to

devaluation after extended training (9000 action selections). At this point the action sequence

{E M ,PL} has been formed (Figure 3.6a) and, as the figure shows, unlike moderate training

the agent continues taking action PL after reinforcer devaluation. This is because action

selection is under sequence-based action control, and the outcome is delivered in the middle

of action sequence {E M ,PL}, which implies that the value of the action sequence will remain

unchanged after the offline devaluation of the value of the outcome, and therefore, the agent

will continue selecting action sequence {E M ,PL}. After several learning trials, because the

experiment is conducted in extinction and no reward is received, the average reward decreases,

which means deciding faster is not beneficial, and causes the macro action {E M ,PL} to

decompose to action E M and action PL. At this point, behavioral control should return to

the model-based system, and the probability of taking action PL should adjust to the new

conditions induced by devaluation.

3.5.2.2 Contingency degradation before vs. after action sequence formation

In section 2.4.1 we pointed out that habits are not just insensitive to reinforcer devaluation

but also to the effects of degrading the instrumental contingency. A good example of this

is the failure of habits to adjust to the imposition of an omission schedule, as shown in

figure 2.4B. Having learned that lever pressing delivers food, the omission schedule reverses

that relationship such that food becomes freely available without needing to lever press
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Figure 3.6 – Sensitivity of the model to reinforcer devaluation and contingency manipula-
tions before and after sequence formation. (a) In the moderate training condition, actions
are selected based on the model-based evaluation (left panel) but, after extended training,
the selection of the press lever (PL) action is potentiated by its previous action [here enter
magazine (E M); right panel]. (b) After the devaluation phase (shown by the solid-line), the
probability of pressing the lever decreases instantly if the model is moderately trained. The
abscissa axis shows the number of action selections. (c) After the devaluation phase behavior
does not adapt until the action sequence decomposes and control returns to the model-based
method. (d) In a moderately trained model the probability of selecting action PL starts to
decrease in the contingency degradation condition, although the rate of decrease is greater
in the case of omission training. (e) When training is extensive, behavior does not adjust
and the non-contingent and omission groups perform at the same rate until the sequence
decomposes. Data reported are means over 3000 runs.
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to receive it. However, in the experimental group, lever pressing delays free food delivery;

hence, the rats now have to learn to stop lever pressing to get the reward. The ability to stop

responding in the omission group is compared with rats given exposure to a zero contingency

between lever pressing and reward delivery (the non-contingent control). As shown previously

(e.g. (Dickinson et al., 1998); Figure 2.4B) in this situation, rats who are given moderate

instrumental training are able to withhold their lever press action to get food; the omission

group responds less than the control group when the omission schedule is introduced. When

lever pressing has been overtrained, however, the rats are insensitive to omission and cannot

withhold their lever press responses compared with the control group.

For the simulation of non-contingent reward delivery in the control condition, the model

underwent the instrumental conditioning procedure described in the previous section (Fig-

ure 3.5a), and then the model was simulated in the task depicted in Figure 3.5d. The agent

can obtain reward by taking action E M without performing action PL, and hence reward

delivery is no longer contingent upon action PL. For the simulation of the omission schedule,

after instrumental training (Figure 3.5a), the agent was exposed to the schedule depicted in

Figure 3.5e. The difference between this schedule and the non-contingent schedule is that,

after pressing the lever, the model must wait 6 seconds before obtaining the reward by taking

action E M , which models the fact that rewards are delayed if the animal chooses action PL

under the omission schedule. The behavior of the model after moderate training is depicted

in Figure 3.6d. As the figure shows, after the introduction of the degradation procedure, the

probability of taking action PL starts to decrease. The rate of decrease is faster in the case

of the omission schedule, in comparison to the non-contingent schedule. This is because

the final value of action PL in the omission condition is lower than the final value of the

non-contingent condition and, therefore, the values adjust faster in the omission case.

Figure 3.6e shows the effect of omission and degradation after more extended training when

action selection is under sequence-based control. As the figure shows, in both the control and

omission conditions, the probability of selecting the action fails to adjust to the new conditions

and the agent continues selecting action PL. However, in the omission condition, because
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rewards are delayed as a result of pressing the lever, the average reward starts to decrease

and, after sufficient omission training, the action sequence decomposes, and behavior starts

to adapt to the new conditions. In the case of non-contingent reward delivery, because the

average reward remains constant, the model predicts that the agent will continue pressing

the lever, even after extended exposure to the non-contingent schedule. This prediction has

not been assessed in the literature largely because exposure to non-contingent reward tends

to have a generally suppressive effect on performance, as competition from E M responding

increases and action PL begins to extinguish.

Although somewhat idealized relative to the effects observed in real animals, it should be clear

that, in contrast to simple RL, sequence learning and habitual actions are both accurately

modeled by this mixed model-based and sequence-based architecture. The implications of

this model for the behavior of real animals and for theories of goal-directed and habitual

action control are described below.

3.6 Discussion

A number of investigators have noted the apparently competitive nature of these forms of

action control, and some have suggested that these processes may compete for access to the

motor system. Using this general approach, previous computational accounts have success-

fully explained the effect of reinforcer devaluation on instrumental responses in different

stages of learning (Daw et al., 2005; Keramati et al., 2011), the effect of habit formation on

reaction times (Keramati et al., 2011), and the effect of the complexity of state identification

on the behavioral control (Shah & Barto, 2009). All these approaches shares a common flat

architecture in which the goal-directed and the habitual systems work in parallel at the same

level, and utilize a third mechanism, called an arbitration mechanism (section 2.4.3), to decide

whether the next action will be controlled by the goal-directed or the habit process. They differ

from the hierarchical architecture used here in which the goal-directed system stands at a

higher level, with the role of the habit process limited to efficiently implementing decisions
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made by the goal-directed system in the form of macro actions. This structural difference itself

raises some important behavioral predictions. For example, in the hierarchical structure, the

goal-directed system treats macro actions as integrated units, and thus the action evaluation

process is blind to the change in the value of states visited during execution of the macro

action. Thus, in Figure 3.3, goal-directed action evaluation in state S depends only on the

value of states S1, S2, S3 and the total reward obtained through executing the macro action.

As a consequence, changing the value of state S4 has no immediate impact on the decisions

made at state S. In contrast, in a flat architecture, goal-directed action selection is conducted

by searching all the consequences of possible actions and, thus, a change in the value of state

S4 should immediately affect action selection in state S.

Another prediction of a sequence-based conception of habits is that, if an agent starts decision-

making in a state in which an action sequence has been learned (state S), it will immediately

show habit-like behavior, such as insensitivity to outcome devaluation. In contrast, if it starts

decision-making somewhere in the middle of a sequence (e.g. in the test phase the task starts

in an intermediary state such as S4), it will not show habit-like behavior. This is because in

the current conception of the model, an action sequence can be launched only in the state in

which is has been learned.

The problem of mixed closed-loop and open-loop decision-making has been previously

addressed and discussed in the literature, but the solutions proposed differ from that suggested

here. In the model proposed here, the inputs for the mixed architecture come from fast

action control in the open-loop mode, whereas in previous work they have come from a

cost associated with sensing the environment (Hansen, Barto, & Zilberstein, 1996), or the

complexity of modeling the environment (Kolter, Plagemann, Jackson, Ng, & Thrun, 2010).

From a control point of view, in most situations (especially stochastic environments), open-

loop action control is considered to be inappropriate. As such, in hierarchical approaches

to RL, the idea of macro actions is usually generalized to closed-loop action control (Barto &

Mahadevan, 2003).
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Behavioral and neural signatures of this generalized notion have been found in previous

studies (Haruno & Kawato, 2006; Botvinick, 2008; Botvinick et al., 2009; Badre & Frank, 2012;

Ribas-Fernandes et al., 2011). Here, instead of using this generalized hierarchical RL, we

utilized a hierarchical approach with a mixed open-loop and closed-loop architecture that

allows us to incorporate the role of action sequences in habit-learning. Further, to examine

the potential neural substrates of this architecture, we developed a method based on the TD

error for learning macro actions, though various alternative methods have also been proposed

for this purpose (Korf, 1985; Iba, 1989; Randlø v, 1998; Mcgovern, 2002).

With regard specifically to sequences, the effect of overtraining on reaction times has been

addressed in instrumental conditioning models (Keramati et al., 2011), which often interprets

them as the result of transition to habitual control, which, because it is fast, results in a

reduction in reaction times. However, that model predicts a decrease in reaction times in

both random and sequential trials of SRTT. This is because, on that approach, a habit forms

whenever the values of the available choices are significantly different, irrespective of whether

the sequence of states is predictable. As such, because in both sequential and random trials

of SRTT the values of correct and incorrect responses are different, the model predicts that

habits will form and reaction times decrease in both cases, which is not consistent with the

evidence. In the sequence-learning literature, the issue of learning sequences of responses

and stimuli using TD error has been addressed (Berns & Sejnowski, 1998; Bapi & Doya, 2001;

Nakahara et al., 2001; Bissmarck, Nakahara, Doya, & Hikosaka, 2008). However, because these

models are generally developed for the purpose of visuo-motor sequence learning, it is not

straightforward to apply them to instrumental conditioning tasks. Likewise, the effect of the

predictability of stimuli (i.e. random vs. sequential trials in the SRTT) on reaction times is not

directly addressed in these models, which makes it hard to compare them in SRTT.

Based on a number of studies, it appears that the acquisition of goal-directed actions is

controlled by a circuit involving the medial prefrontal cortex and dorsomedial striatum (DMS).

For example in one study animals were trained to take two different actions (two different

levers) to earn two different outcomes. A test conducted after the devaluation of one of the
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outcomes, revealed that the control animals (with intact DMS) showed a preference for the

action which its outcome was not devalued, but the animals in which DMS was inactivated

selected both levers equally. Here an important question is how to interpret the lack of

insensitivity to outcome devaluation in animals with an inactivated DMS. One interpretation

can be that the inactivation of DMS resulted in the emergence of habits and such responses

are the result of the automatic action selection. However, this interpretation is not entirely

consistent with the framework proposed in this chapter, because in such experiments animals

are generally moderately trained, and therefore, the action sequences still won’t have had

a chance to develop. Another interpretation of such results is that the equal preference

for both actions observed during the test is actually the result of the random responses

generated by the disrupted goal-directed process (as a result of inactivating DMS), which

cannot evaluate and select actions appropriately. This latter interpretation is more consistent

with the framework suggested in this chapter, in which all the actions are dependent on the

goal-directed processes.

There is some evidence from previous studies indicating that although over-training makes

lever presses insensitive to changes in the outcome values, magazine entries remain sensitive

to the changes of the value of outcomes (Killcross & Coutureau, 2003) (although this effect is

not always observed). That is, animals for which the outcome has been devalued press the

lever at the same rate as the animals for which the outcome is has not been devalued, but

they enter the magazine less than the other group. This observation seems inconsistent with

the framework proposed here, since here it is suggested that animals perform a sequence

of magazine entries followed by lever presses. It is important to recognize that each initial

magazine entry is usually followed by further several magazine checks, i.e., animals check the

magazine multiple times before taking the next press. Such extra magazine entries can be

guided by Pavlovian processes, which are presumably sensitive to the changes in the value of

outcomes. As such, the observed decrement in magazine entries after outcome devaluation

can be because of the elimination of the extra magazine entries that animals make after the

first magazine entry. That is, the proposed action sequence is in place and animals take an
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E M action after each LP action, however, the E M action in non-devalued animals consists

of several magazine entries, while in the devalued animals it consists of a lower number of

magazine entries, which is consistent with the proposed framework and the above observation.

A recent study has investigated the role of dorsolateral striatum (DLS) and infralimbic cortex in

automatic actions measured by both the development of action sequences and the insensitivity

of actions to changes in outcome values (Smith & Graybiel, 2013, 2014). Animals were trained

in a T-maze, in which at the end of each arm a separate outcome (O1 and O2; chocolate milk

and sucrose solution in this experiment) was delivered to the them. At the start of each trial

there was a cue which told animals which arm they needed to enter in order to earn a reward

(the outcome specific to that arm). The study included two groups of animals: one group of

animals (CT) were trained moderately and only until they reached the criterion of statistically

significant performance, and the other group (OT) were trained for at least ten additional

sessions. Animals were then given a post-devaluation test, in which one of the outcomes was

devalued. Results showed that animals in the OT group kept running to the arm that would

have delivered the devalued outcome, while animals in the CT group significantly reduced

their runnings to the arm which would have delivered the devalued outcome. Neuronal

recording showed that task-bracketing activity in DLS, that marked the beginning and end of

each trial, was emerged in the OT group, and also interestingly in the CT group that according

to the behavioral results showed sensitivity to outcome devaluation. Such task-bracketing

activity, therefore, was unrelated to the sensitivity to outcome devaluation, however it was

negatively correlated with deliberative head movements at the choice point of the maze (at

the junction in which the animals needed to select an arm to run to). That is, higher DLS

activity at the beginning of each trial marked less amounts of deliberative head movements.

Such deliberative head movements, however, were not related to the sensitivity or insensitivity

to outcome values. Finally, The task-bracketing DLS activity once established, persisted

even after delivering the devalued outcome, which was accompanied by marked behavioral

changes.

In the above study the disassociation between deliberative head movements and sensitivity
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to outcome values can be understood within the hierarchical model-based RL framework

proposed here: the goal-directed process evaluates both O1 and O2 and chooses to run the

action sequence that leads to the non-devalued outcome, which implies sensitivity to outcome

values but lack of deliberative head movements (since actions will be selected according to

the sequence). As such one would expect to see the bracketing activity in DLS and at the same

time sensitivity to outcome values, as observed in the CT group. As a result of over-training,

according to the theory, insensitivity to outcome values developed in the OT group because

the boundaries of action sequences had expanded to include the outcome of each action

sequence, which made the evaluation of action sequences insensitive to changes in outcome

values.

One important restriction of the proposed model relates to the fact that it may seem implausi-

ble to assume that, after an action sequence has been formed, the individual actions are always

executed together. To address this issue it can, for example, be assumed that, occasionally,

the model-based controller interrupts the execution of actions during the performance of an

action sequence in order to facilitate learning new action sequences. Along the same lines,

it can be assumed that action sequences do not replace primitive actions (as proposed in

this paper), but are added as new actions to the list of available actions (see section 2.4.5

for a discussion). Finally, investigating why some kinds of reinforcement schedules lead to

habits (action sequences) whilst others do not, is an interesting issue and each of these will be

addressed in future work.

3.7 Summary

In this chapter, we presented a new computational model for hierarchical goal-directed

decision-making, and developed a potential role for dopamine in learning action sequences.

Furthermore, we showed that this model can explain behavioral properties that have been

previously attributed to model-free RL. In the next chapter, we focus on the exclusive properties

of the proposed hierarchical account that model-free RL is unable to explain, and compare
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these two alternative account of automatic actions more directly.

3.8 Appendix

We aim to estimate C (s, a, a′) by the samples of the error signal experienced by taking action

a′, after action a in state s. C (s, a, a′) is defined as:

C (s, a, a′) = E [δ(s′, a′)|s, a] (3.9)

we maintain that:

C (s, a, a′) = E

[
P (a′|s, a)

P (a′|s′) δ(s′, a′)|s, a, a′
]

(3.10)

this follows from:

C (s, a, a′) =E

[
P (a′|s, a)

P (a′|s′) δ(s′, a′)|s, a, a′
]

=∑
s′

P (a′|s, a)P (s′|s, a, a′)
P (a′|s′) δ(s′, a′)

=∑
s′

P (s′|s, a)δ(s′, a′)

= E [δ(s′, a′)|s, a]

(3.11)

P (a′|s, a) and P (a′|s′) can be estimated directly by counting number of times action a′ has

been taken after s, a and after s′, respectively. Given these, C (s, a, a′) can be estimated by

averaging over the samples of the error signal multiplied by the factor α:

α= P (a′|s, a)

P (a′|s′) (3.12)

α is in fact the percentage of taking action a′ after s and a is due to being in state s′. If action

a′ is not available in state s′, we assume this factor is infinity. Given α, the cost function is

estimated using equation 3.8.
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The implementation of the mixed architecture is similar to model-based hierarchical rein-

forcement learning (RL). After execution of a macro action finished, the characteristics of

the underlying semi-Markov Decision Process (SMDP) are updated. That is, the total reward

obtained through executing the macro action, and the total time spent for executing the macro

action, are used for updating the reward and transition delay functions. Here, because we

assumed that reward function depends on the states, and not state–action pairs, the total

reward obtained through the macro action cannot be assigned to the state in which the macro

action was launched. This is because the total reward obtained through the macro action

can be different from the reward of the state. For addressing this problem, when an action

sequence was formed, a temporary extended auxiliary state is added to the SMDP, to which

the agent enters when the macro action starts, and exits when the macro action finished.

The transition delay and reward function of this auxiliary state is updated using the rewards

obtained through executing the macro action, and the time spent to take the macro action.

Because according to the Bellman equation for average reward semi-Markov RL, the Q-values

satisfy equation 3.4 (Puterman, 1994), when a non-exploratory action is taken (the action with

highest value is taken), we update the average reward as follows:

R̄ ← (1−σ)R̄ +σ
[

r +V (s′)−V (s)

d

]
(3.13)

whereσ is the learning rate of the average reward. For the action selection (in the model-based

system), soft-max rule is used:

P (s|a) = eβQ(s,a)∑
a′ eβQ(s,a′) (3.14)

where parameter β determines the rate of exploration. For computing model-based values,

a tree-search algorithm was applied with the depth of search of three levels. After this level,

goal-directed estimations are replaced by model-free estimations.

Due to the fluctuations of C (s, a, a′) and R̄τ at the point they meet, a series of sequence forma-

tion/decomposition may happen before the two curves become separated. To address this
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Table 3.1 – Free parameters of the model, and their assigned values

Parameter Value

Update rate of the reward function 0.05
Update rate of the average reward (σ) 0.002

Update rate of the cost of sequence-based control (ηC ) 0.001
Initial value of the cost of sequence-based control -2

Rate of exploration (β) 4

issue, an asymmetric rule for sequence decomposition is used, and a sequence decomposes

only if −C (s, a, a′) > 1.6R̄τ. Also, for simplicity, we assumed that macro actions could not be

cyclic.

Internal parameters of the model are shown in Table 3.1.
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4 Hierarchical decision-making

in humans

In the previous chapter we showed that the outcome devaluation and contingency degradation

experiments can be explained using the proposed model-based hierarchical RL. In this chapter,

we develop a two-stage decision-making task in humans (based on the task developed by (Daw

et al., 2011)), and then we make a direct comparison between model-free and hierarchical

accounts of automatic actions.

4.1 Introduction

There is now considerable evidence from studies of instrumental conditioning in rats and

humans that the performance of reward-related actions reflects the involvement of two learn-

ing processes, one controlling the acquisition of goal-directed actions and the other of habits

(C. D. Adams, 1982; Dickinson et al., 1998; Dickinson, 1994; Balleine & O’Doherty, 2010).

This evidence suggests that goal-directed decision-making involves deliberating over the

consequences of alternative actions in order to predict their outcomes after which action

selection is guided by the value of the predicted outcome of each action. In this respect, action

evaluation relies on the representation of contingencies between actions and outcomes as

well as the value of the outcomes, which in sum constitute a model of the environment. In

contrast, habitual actions reflect the tendency of individuals to repeat behaviors that have
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led to desirable outcomes in the past and respect neither their causal relationship to, nor the

value of their consequences. As such, they are not guided by a model of the environment, and

are relatively inflexible in the face of environmental changes (Daw et al., 2005; Keramati et al.,

2011; Doya, 1999).

Although these features of goal-directed and habitual action are reasonably well accepted, the

structure of habitual control, and the way in which it interacts with the goal-directed process

in exerting that control, is not well understood. Two types of architecture have been proposed:

a hierarchical architecture and a flat architecture. In chapter 3, we described a version of the

hierarchical structure in the context of advancing a new theory of habits. Although habits are

usually described as single step actions, their tendency to combine or chunk with other actions

(Graybiel, 2008; Book, 1908; Lashley, 1951; Pew, 1966) and their insensitivity to changes in

the value of, and the causal relationship to, their consequences (Balleine & O’Doherty, 2010;

Dickinson & Balleine, 2002), suggests that they may best be viewed as action sequences.

On this view habit sequences are represented independently of the individual actions and

outcomes embedded in them such that the decision-maker treats the whole sequence of

actions as a single response unit. As a consequence, the evaluation of action sequences is

divorced from offline environmental changes in individual action-outcome contingencies or

the value of outcomes inside the sequence boundaries and, as they are no longer guided by

the model of the environment (chapter 3), are executed irrespective of the outcome of each

individual action (Pew, 1966; Keele, 1968); i.e., the actions run off in an order predetermined

by the sequence, without requiring immediate feedback.

On this hierarchical view, such action sequences are utilized by a global goal-directed system

in order to efficiently reach its goals. This is achieved by learning the contingencies between

action sequences and goals and assessing at each decision point whether there is a habit

that can achieve that goal. If there is, it executes that habit after which control returns to the

goal-directed system. In essence, the goal-directed system functions at a higher level and

selects which habit should be executed whereas the role of habits is limited to the efficient

implementation of the decisions made by the goal-directed process (Ostlund et al., 2009)
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Habit (ac n sequence) 

GD 
Rr1 or Rr2? 

Restaurant2Head to crossing point                      Look Le                Cross the road 

a) Hierarchical 

b) Flat 

GD H Ar 

Restaurant on this side of the road 
or head to crossing point? 

GD H Ar 

Look le  or right? 

GD H Ar 

Cross the road or …? 

Restaurant1

Figure 4.1 – An example illustrating the difference between the hierarchical and flat organiza-
tions. (a) Hierarchical interaction. The goal- directed system (GD) selects goals and decides
whether to go to a restaurant on this side of the road (Rr1) or on the other side of the road
(Rr2). If it chooses to go to the restaurant on the other side of the road, then it triggers the
habit of crossing the road and control transfers to the habitual process. After execution of
the habit finishes, control returns to the goal-directed system. (b) Flat interaction. At each
decision point, the arbitration mechanism (Ar) decides whether the next action should be
controlled by the goal-directed system or the habitual system (H).

(chapter 3) (see (Botvinick et al., 2009) for a review of other schemas).

Assume, for example, you are deciding whether to go to a restaurant on this side of the road or

on the other side of the road (Figure 4.1a). The goal-directed system evaluates both options,

and decides to go to the restaurant across the road. It thus triggers a ‘crossing the road’ habit,

and transfers the control to the habitual system. The habit is an action sequence composed of

several individual actions: (1) head to the crossing point, (2) look left, and (3) cross the road.

Individual actions are executed one after another, and after they finish, the control transfers

back to the goal-directed system to make the next decision such as, for example, choosing

from the menu in the restaurant.

In contrast to the hierarchical architecture, the flat architecture treats habits as single step
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actions rather than action sequences (e.g. (Daw et al., 2005)). At each step, an arbitration

mechanism decides whether the next action should be controlled by the goal-directed system

or the habitual system. In the context of the above example, at the beginning the arbitration

mechanism selects one of the systems to decide whether to go to the restaurant on this side

of the road or to the crossing point. Again, at the crossing point, the arbitration mechanism

selects one of the systems to decide whether to look left, or right, and similarly at each future

step the arbitration mechanism selects one of the systems to control behavior (Figure 4.1b). It

should be clear, therefore, that, in the flat approach, both systems are at the same level and

action evaluation happens in both processes; both systems evaluate available alternatives,

and the arbitration mechanism determines how these two evaluations combine to make the

final decision.

From the flat perspective, another difference between goal-directed and habitual processes lies

in how they evaluate actions. The goal-directed process obeys the same principles sketched

earlier: learning the model of the environment, and making predictions based on that model

(model-based evaluation). In contrast, the habitual system is model-free and evaluates ac-

tions based on their ‘cached’ reward history without searching through the action-outcome

contingencies (Daw et al., 2005; Doya, 1999).

More recently, Daw et al (Daw et al., 2011) have exploited the difference between model-free

and model-based evaluation to investigate the interaction of goal-directed and habit processes

in a flat structure reasoning that, because model-free evaluation is retrospective, chaining pre-

dictions backward across previous trials, and model-based evaluation is prospective, directly

assessing available future possibilities, it is possible to distinguish the two using a sequential,

multistage choice task. In this task subjects first make a binary choice (stage 1) then transition

to stage 2 in which they make a second choice to earn a reward. The best choice at stage 2

varies depending on the first choice and, to maintain a constant trade-off between habitual

and goal-directed systems, the reward probabilities in stage 2 are continually varied. By exam-

ining stage 1 choices, Daw et al were able to find evidence of mixed goal-directed and habitual

predictions.
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Here we show that stage 1 habitual actions, explained by the model-free evaluation in previous

work, can also be explained by assuming that stage 1 actions chunk with stage 2 actions,

reducing the source of habitual actions to the formation of action sequences. Based on this

finding we next examined specific predictions of each account. With regard to the two-stage

task, the flat account predicts that feedback received after the execution of an action will

affect subsequent decisions and, therefore, that arbitration between goal-directed and habit

controllers will recur anew at each stage. As a consequence, action-control at each stage of the

task should be independently established; in particular it should be noted that action control

in stage 2 should not depend on stage 1. In contrast, because our hierarchical account treats

habits as action sequences, and because the execution of habits is open-loop (section 3.1),

it predicts that, during the execution of a habit, actions will be executed one after another

without considering feedback from the environment during the sequence and, therefore,

that, when habitual, the action taken at stage 2 is already determined when starting the habit

sequence at stage 1. We made two further predictions from the hierarchical account: first,

because of their relative freedom from feedback, action sequences should be elicited more

quickly than single actions predicting that, when habitual, reaction times between stage

1 and stage 2 actions will be faster than when non-habitual. Second, and based on these

predictions, we anticipated that the hierarchical model would better fit the performance of

subjects working on this two-stage task than the flat model.

4.2 Material and Methods

4.2.1 Participants and behavioral task

Fifteen English speaking subjects (seven females; eight males; mean age 23.8 years [SD 4.3])

completed a two-stage decision-making task. After a description of the study, written consent

was obtained. This study was approved by the Sydney University Ethics Committee.

Each subject completed 270 trials, with a break after the first 120 trials (Figure 4.2). Each trial

started with the presentation of a black square and subjects could choose between pressing
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either ‘Z’ (using left hand) or ‘/’ (using right hand). After pressing the key, a slot machine

appeared on the screen, and the subject could make the next response, which would result in

either a monetary reward or no reward. The outcome was shown for two seconds and after

that an inter trial interval started and lasted for one second, after which the next trial began.

The probability of earning money at each choice was randomly set to either 0.2 or 0.7 at the

beginning of the session, and in each trial, with the chance of 1/7, they were again randomly

set to 0.2 or 0.7. This later step was to encourage searching for the best keys throughout the

session.

Subjects were instructed that the chance of reaching each slot machine by pressing each

key will not change throughout the task, but the goodness of the keys in terms of leading to

rewards will change over time.

If a stage 1 action is the best action (the maximum probability of receiving reward on the

keys of the slot machine that it commonly leads to is greater than the other action), and slot

machines reset in the next trial, the probability that the action remains the best action is 3/16.

Based on this, and given that probability of resetting is 1/7, the average number of trials for

which a stage 1 action remains the best action is as follows:

∑
i=1...∞

i (6/7+1/7×3/16)(i−1) (13/16×1/7) ≈ 8.6 (4.1)

The fact that a stage 1 action remains the best for a few numbers of trials ensures that reward-

transition interaction does not emerge as the result of developing bias toward the best action.

4.2.2 Behavioral analysis

For all the analyses, we used R (R Core Team, 2012), and the R package lme4 (Bates & Maechler,

2009).

In the analysis presented in the section 4.3.1, we used mixed-effects logistic regression in

which whether the previous first stage action is repeated was a dependent variable, and the
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transition type (rare or common), and reward received in the previous trial were explanatory

variables. We treated all the explanatory variables as random effects.

In the analysis in the section 4.3.2, staying or switching to the other stage 2 action is the

dependent variable, and the reward received in the previous trial and staying on the stage 1

action were the explanatory variables. Only trials in which the stage 2 states were different

from previous trials were included in this analysis. All the explanatory variables were used

as random effects. In the second analysis of this section, staying on the same stage 2 action

is dependent variable, and whether stage 2 state is the same, and whether previous trial was

rewarded, are explanatory variables, and also random effects. Only trials in which stage 1

action is the same as the previous trial were included in this analysis. The third analysis is

similar to the third one, except that trials in which stage 1 action is not the same as the previous

trial are included in the analysis.

For analysis of the model behavior in the section 4.3.2, each model was simulated 3000 trials

in the task with the best fitting parameters of each individual (see the section 4.2.3 below for

more information). Then we analyzed data using linear mixed-effects regression in which the

probability of selecting the same second stage action by the model was taken as the dependent

variable, and the reward received in the previous trial and staying on the first stage actions

were explanatory variables. The intercept was treated as the random effect, and reported

p-values are MCMC-estimated using R package LanguageR (Baayen, 2011).

In the analysis in the first part of the section 4.3.3, staying on the same stage 2 action was a

dependent variable, and the reaction time was an explanatory and random effect. Only trials

in which the previous trial was rewarded (first analysis) or not rewarded (second analysis),

the stage 1 action was repeated, and the stage 2 state was not the same, were included in this

analysis.

In the second analysis of this section, we applied a recursive partitioning method by taking

(i) whether the previous trial is rewarded, (ii) whether the same first stage action is being

taken, and (iii) reaction time as covariates, and staying on the same second stage action
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as response. We used R package ‘party’ (Hothorn, Hornik, & Zeileis, 2006) for the analysis

which employs conditional inference trees for recursive partitioning. In short, the partitioning

method works as follows: at each stage of partitioning the algorithm performs a significance

test on independence between any of covariates and the response using permutation tests. If

the hypothesis is rejected (in the current analysis p-value less than 0.05), it selects the covariate

which has strongest association with the response, and performs a split on that covariate.

4.2.3 Computational modeling

4.2.3.1 Simulation environment

We assumed that the environment has five states; the initial state denoted by S0, (the black

screen in Figure 4.2), slot machine states denoted by S1 and S2, the reward state denoted by

SRe and no-reward state denoted by SN R .

4.2.3.2 Model-based, model-free RL hybrid

For modeling the flat interaction, a family of hybrid models similar to the previous works was

used (Daw et al., 2011; Gläscher et al., 2010; Otto, Gershman, et al., 2013). A model-based RL

(Sutton & Barto, 1998) model was used for modeling goal-directed behavior; and a Q-learning

model (Watkins, 1989) was used to model the habitual behavior. We assumed that actions A1

and A2 are available in states S0, S1 and S2.

Model-based RL- we denote the transition function with T (s′|a, s) which is the probability of

reaching state s′ after executing action a in state s. We assume that the transition function at

stage 1 is fixed (T (S1|A1,S0) = 0.7 and T (S2|A2,S0) = 0.7) and it will not change during learning.

For other states, after executing action a in state s and reaching state s′, the transition function

updates as follows:

∀s′′ ∈ {SRe ,SN R } : T (s′′|s, a) =

 (1−η)T (s′′|s, a)+η : s′ = s′′

(1−η)T (s′′|s, a) : s′ 6= s′′
(4.2)
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Where η (0 < η< 1) is the update rate of the state-action-state transitions.

We assumed that the reward at state SRe is one (R(SRe ) = 1), and zero in all other states. Based

on this, the goal-directed value of taking action a in state s is as follows:

∀s ∈ {S0,S1,S2} : V G (s, a) =∑
s′

T (s′|s, a)V G (s′) (4.3)

Where:

V G (s) =

 maxa V G (s, a) : s ∈ {S0,S1,S2}

R(s) : s ∈ {SRe ,SN R }
(4.4)

Model-free RL- After taking action a in state s, and reaching state s′, model-free values update

as follows:

Q H (s, a) ←Q H (s, a)+α(V H (s′)−Q H (s, a)) (4.5)

Where α (0 <α< 1) is the learning rate, which can be different in stage 1 and stage 2 actions.

For stage 1 actions (actions executed in S0), α=α1, and for stage 2 actions α=α2. Also

V H (s) =

 maxa Q H (s, a) : s ∈ {S0,S1,S2}

R(s) : s ∈ {SRe ,SN R }
(4.6)

In the trials in which the best action is executed in s ∈ {S1,S2} the model-free value of the

action executed in state S0 also updates according to the outcome. If a was to be the action

which was taken in S0, a′ the action taken in s, and s′ the state visited after executing a′, values

update as follows:

Q H (S0, a) ←Q H (S0, a)+α1λ(V H (s′)−Q H (s, a′)) (4.7)
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Where λ(0 < λ < 1) is the reinforcement eligibility parameter, and determines how stage 1

action values are affected by receiving the outcome after executing stage 2 actions.

Final values are then computed by combining the values provided by the habitual and goal-

directed processes:

V (s, a) = wV G (s, a)+ (1−w)Q H (s, a) (4.8)

Were w(0 < w < 1) determines the relative contribution of habitual and goal-directed values

into the final values.

Finally, the probability of selecting action a in state s will be determined according to the

soft-max rule:

π(s, a) = eβ(s)V (s,a)+κ(s,a)∑
a′ eβ(s)V (s,a′)+κ(s,a′) (4.9)

Where κ(s, a) is the action preservation parameter and captures the general tendency of taking

the same action as the previous trial (H. Kim, Sul, Huh, Lee, & Jung, 2009; Lau & Glimcher,

2005). Assuming s = S0 and a being the action taken in the previous trial in the S0 state, then

k(s, a) = k, otherwise it will be zero. The β(s) parameter controls the rate of exploration, and

β(s) =β1 if s = S0 and β(s) =β2 if s ∈ {S1,S2}.

In the most general form, all the free parameters are included in the model: β1,β2,η,α1,λ,k, w

(we assumed that α2 = η). We generated eight simpler models by setting λ= 0, α1 =α2, and

β2 =β1.

4.2.3.3 Hierarchical model-based, sequence-based RL

Implementation of the hierarchical structure is similar to hierarchical RL (Barto & Mahadevan,

2003; Dietterich, 2000; Sutton et al., 1999), with action sequences (A1 A1, A1 A2, etc) as options

(Sutton et al., 1999). We assumed in state S0, actions A1, A2, A1 A1, A1 A2, A2 A2, and A2 A1 are
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available. In states S1 and S2, actions A1 and A2 are available. After reaching a terminal state

(SRe or SN R ), transition functions of both the action sequence, and the single action that led to

that state update according to equation 4.2. In the case of single actions, the transition function

will be updated by the η= η1 update rate, and in the case of action sequences, the transition

function will be updated by the η= η2 update rate. Based on the learned transition function,

value of action a in state s is calculated by the goal-directed system using equation 4.3.

The probability of selecting each action will be as follows:

π(s, a) = eβω(a)V G (s,a)+κ(s,a)∑
a′ eβω(a)V G (s,a′)+κ(s,a′)

(4.10)

Where ω(a) determines the relative preference for single actions instead of executing action

sequences. If action a is a single action ω(a) = w , and if action a is an action sequence,

ω(a) = 1−w . As before, κ(s, a) captures action perseveration. We assumed that κ(s, a) = k1

if action a is a single action, and κ(s, a) = k2 if action a is an action sequence. V G (s, a) is

calculated using Equation 4.3.

For calculating the probability of selecting actions in stage 2, given the first choice of the

subject, we need to know whether that action is a part of an action sequence selected earlier,

or is it under goal-directed control. Assume we know action A1 has been executed in state S0

by the subject, the probability of this action being due to performing the A1 A2 action sequence

is:

P (A1 A2|S0, A1) = π(A1 A2|S0)

π(A1|S0)+π(A1 A2|S0)+π(A1 A1|S0)
(4.11)

Similarly, the probability of observing A1 due to selecting the single action A1 is:

P (A1|S0, A1) = π(A1|S0)

π(A1|S0)+π(A1 A2|S0)+π(A1 A1|S0)
(4.12)

Based on this, the probability that the model assigns to action a in state s ∈ {S1,S2}, given that
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action a′ is being observed in S0 is:

P (s, a) = P (a′|S0, a′)π(s|S)+P (a′a|S0, a′) (4.13)

Where P (a′a|S0, a′) and P (a|S0, a′) are calculated using equations 4.11 and 4.12 respectively.

In the most general form, all the free parameters are included in the model: β, η1, η2, k1, k2,

w . We generated eight simpler models by setting η2 = η1, ω(a) = 1, and k2 = k1.

In the analyses in the section 4.3.3, we assumed that reaction times in stage 2 are inversely

related to the probability of executing an action sequence in stage 1. As such, if subject has

taken action A1 in stage 1, and action A2 in stage 2, then model prediction of the reaction time

of A2 will be:

RT −1 = π(A1 A2|S0)

π(A1|S0)+π(A1 A2|S0)
(4.14)

For the second analysis in the section 4.3.3, we aimed to remove the effect of action sequences

in stage 2 choices. We used eight models same as above, but the probability that the model

assigns to action a in state s ∈ {S1,S2}, was defined as:

P (a|s) =π(a|s) (4.15)

Which indicates probability of taking each action in each slot machine is guided only by the

rewards earned on that slot machine, and not by the action sequences in stage1.

4.2.3.4 Model selection

Since the two families of models that we are comparing are not nested in each other, we

can’t use classical model selection. Instead, we use a Bayesian model selection for comparing

these two families of models (Penny et al., 2010). We first calculated the model evidence for

each model using the Laplace approximation (Daw, 2011; MacKay, 2003), and then calcu-
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lated the exceedance probability favoring each family, (taking model identity as a random

effect) using the ‘spm_compare_families’ routine in the spm8 software. Within each fam-

ily, exceedance probabilities were calculated using the ‘spm_BMS’ routine (Stephan, Penny,

Daunizeau, Moran, & Friston, 2009).

The Laplace approximation requires a prior assumption of probability distributions over the

free parameters of models. Similar to the previous study (Daw et al., 2011), for parameters be-

tween zero and one (learning rates, reinforcement eligibility, weight parameter), we assumed a

Beta(1.1, 1.1) distribution; for exploration-exploitation parameters we assumed a Gamma(1.2,

5) distribution, and for perseveration parameters, a Normal(0, 1) distribution was assumed.

The Laplace approximation includes finding the maximum a posteriori (MAP) parameter

estimates. For this purpose, we used the IPOPT software package (Wächter & Biegler, 2005)

for nonlinear optimization, and the DerApproximator package (Kroshko, n.d.) in order to

estimate the Hessian at the MAP point.

4.3 Results

Fifteen subjects completed a two-stage decision-making task (Figure 4.2), in which each

trial started with a choice between two key presses (stage 1 actions; A1 vs. A2). Each key

press resulted in the appearance of either of two slot machines (denoted by S1 and S2 and

distinguished by their colors) in a probabilistic manner. Next, at the slot machines, subjects

again chose between two key presses (stage 2 actions; A1 versus A2), and, as a result, received

an outcome; i.e., either a monetary reward or a neutral outcome. At stage 1, A1 most commonly

led to S1, and A2 to S2 (common transitions; 70% of the time). In a minority of trials, A1 led to

S2, and A2 to S1 (rare transitions; 30% of the time). This relationship was kept fixed throughout

the test. Each of the stage 2 responses at the slot machines earned a reward either at a high

probability (0.7) or a low probability (0.2). In order to ensure the subjects kept searching for

the best keys and slot machines during the test, at each trial, with a small probability (1:7),

the rewarding probability of each key changed randomly to either the high or low probability.
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Figure 4.2 – (a) Illustration of the timeline of events within a trial. Initially a black screen is
presented, and the subject can choose between pressing A1, or A2 (stage 1 choice). After a key
is pressed, one of the slot machines is presented, and the subject can again choose between
pressing A1, and A2 (stage 2 choice). Choices at stage 2 are reinforced by monetary reward.
(b) Structure of the task. One of the key presses commonly leads to one of slot machines
(70% of the time), and the other key commonly leads to the other slot machine. Choices at
stage 2 are reinforced either by a high probability (0.7) or a low probability (0.2). With a small
probability (1/7), the rewarding probability of each key changes randomly to either the high
or low probability.

.

Each participant completed 270 trials.

4.3.1 Goal-directed and habitual performance

In the analysis, we first sought to establish whether decision-making in this task is goal-

directed, habitual or a mixture of both and, if both, to assess whether goal-directed and

habitual control interact according to a flat structure or a hierarchical structure.

The first question can be answered by looking at the likelihood of the subjects repeating the

same stage 1 action on each trial based on feedback received on the previous trial (Daw et

al., 2011). Take for example a trial in which a subject presses A1 and transfers to the S2 slot

machine (which is rare result of choosing A1). If the participant presses a button of that slot
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Figure 4.3 – (a) Modeled habitual action control on the two–stage task: Under habitual control
a stage 1 action that has been eventually reinforced (reward) in the previous trial is more likely
to be repeated (higher stay probability), regardless of whether the repeated action commonly
leads to the same slot machine (common) or not (rare). (b) Modeled goal-directed action con-
trol on the two–stage task: Under goal-directed action control a reinforced action is repeated
if it commonly leads to the same slot machine in which reward is received, otherwise the
other action is selected. (c) Data from the experiment: Actual stay probabilities averaged over
all subjects and trials. When the previous trial was rewarded, stay probability was generally
higher (as in habitual control), and was also higher when the previous trial was a common
transition (as in goal-directed control). Thus, the responses of the subjects in the experiment
were found to be a mixture of both habitual and goal-directed action control.

.

machine and receives a reward, this implies S2 is probably a good slot machine and, if the

decision-making is goal-directed, in stage 1 of the next trial the subject should try to reach this

S2 slot machine again. It is expected therefore, that the probability that the subject will press A2

will increase because it is this key that (in this example) commonly leads to S2 (cf. Figure 4.3b).

In contrast, if decisions are habitual, subjects should not be guided by contingencies between

the responses and slot machines, and should tend to stay on the previously rewarded action,

A1 (Figure 4.3a).

The results are presented in Figure 4.3c, which shows the probability of repeating the same

action computed across all subjects and trials. We analyzed the data using mixed-effects

logistic regression analyses by taking all coefficients as random effects across subjects (see

section 4.2.2). Results show that being rewarded in the previous trial increased the chance of

staying on the same action, irrespective of whether it was a rare or a common transition (main
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effect of reward; coefficient estimate = 0.61; SE = 0.09; p<3e-11), which suggests that habits

constitute a component of the behavior. On the other hand, this increase was higher if the

previous trial was a common transition (and lower after an unrewarded trial), suggesting that

subjects also utilized their knowledge about the task structure (reward-transition interaction;

coefficient estimate = 0.41; SE = 0.11; p<5e-4). Therefore, the subjects’ behavior was a mixture

of both goal-directed and habitual actions. Also, as the figure shows, the probability of staying

on the same action is generally higher than not staying on it, irrespective of reward and

transition type in the previous trial (the intercept term is significantly positive; estimate =

1.52; SE = 0.20; p<10e-14), which reflects a general tendency of animals and humans to repeat

previous actions (Ito & Doya, 2009; Lau & Glimcher, 2005).

In previous studies, a hybrid model of model-free and model-based reinforcement learning

(RL) was advanced to explain the behavior of subjects on this task based on the flat structure

(Daw et al., 2011; Gläscher et al., 2010; Otto, Gershman, et al., 2013) (section 2.4.3). According

to this model, action values learned in model-free RL, roughly, reflect the frequency of the

action rewarded on previous trials irrespective of the action-outcome contingency (i.e., in the

current task, which key generates which slot machine) and, as such, these values underlie

the habitual component of the model. These model-free values are then mixed with the

values provided by the goal-directed system (modeled by a model-based RL) to produce the

final values which guide action selection. As a consequence, and consistent with the above

results, we should expect to see a combination of both habitual and goal-directed actions. The

prediction from this hybrid model is illustrated in Figure 4.4a. A hierarchical structure can,

however, also be used to explain these results. For example, assume that a subject presses

A1 in stage 1, and A2 in stage 2 and receives a reward. As a result, the goal-directed system

learns that contingency between the A1A2 action sequence and the reward is increased and

so it should be more likely to repeat the action sequence in the next trial, whether or not the

reward was received from the S1 or S2 slot machine (i.e., the common or rare transition). As

the evaluation and performance of an action sequence is not guided by the task structure (i.e.

the key-slot machine association), from this perspective it constitutes the habitual component
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Figure 4.4 – The probability of staying on stage 1 action in simulations of: (a) the flat archi-
tecture; and, (b) the hierarchical architecture. Both architectures can model the pattern of
data observed in stage 1 stay probabilities on the task: i.e., a higher stay probability after being
rewarded on the previous trial and an interaction between reward and transition.

of the behavior (see (Dezfouli, Lingawi, & Balleine, 2014) for the relation of phenomenon

to outcome devaluation experiments). All actions - either single action (e.g., A1) or action

sequences (e.g., A1A2)-, will be subject to the goal-directed action selection process, such that

actions with higher values will be selected with a higher probability. As a consequence, this

implies that the behavior will be a mixture of habitual (when action sequences are selected)

and goal-directed (when single actions are selected) actions and that this mix of actions

can be generated without the need for the model-free component or an explicit arbitration

mechanism used in the flat structure. This prediction is illustrated in Figure 4.4b.

4.3.2 The interaction of goal-directed and habitual actions

Although both approaches are able to explain the mixture of behavioral control in the stage

1, they make different predictions about stage 2 choices. This is because, if the observed

habitual behavior is due to the execution of an action sequence, rather than cached values

as the model-free account supposes, then we expect the subject to repeat the whole action

sequence in the next trial, not just stage 1 action.

Staying on the same stage 1 action in the next trial after being rewarded implies that this is

probably a habitual response and so we expect the subject to repeat stage 2 action as well,
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Figure 4.5 – The probability of staying on stage 2 action on trials for which the slot machine
differs from the on one in the previous trial: (a) The observed stay probabilities. When the
subjects are rewarded and stay on the same stage 1 action (same), the probability of staying
on the same stage 2 action is higher. (a) Simulation of the flat architecture. Note that this is
not consistent with the pattern in panel (a). (c) Simulation of the hierarchical architecture,
which is consistent with the pattern observed in actual stay probabilities.

even if the slot machine is different from the one in the previous trial. In contrast, if the subject

switches to the other stage 1 action, the previous action sequence is not repeated, and thus

stage 2 action is not expected to be repeated if the subject ends with a different slot machine

in the next trial. In order to test this prediction, we looked at the trials that had a different slot

machine to the one in their previous trial.

Figure 4.5 shows the probability of repeating the same stage 2 action as a function of whether

this action was rewarded on the previous trial and the subject had subsequently taken the

same stage 1 action. Logistic regression conducted on stage 2 choices using factors of reward,

separating rewarded and non-rewarded trials, and action, separating trials on which stage 1

action was the same from those on which it differed, found neither an effect of reward (p>0.05),

nor of action (p>0.05) but found a significant interaction between these factors (coefficient

estimate = 1.02; SE = 0.38; p<0.008), indicating that, during the execution of habitual responses,

subjects tended to repeat stage 2 action. This interaction remained significant even when

we restricted the analysis either to trials after rare transitions (coefficient estimate = 1.33; SE

= 0.60; p<0.05) or after common transitions (coefficient estimate = 0.93; SE = 0.38; p<0.05).
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Figure 4.6 – The probability of staying on the stage 2 action when the same (a) or different (b)
stage 1 action is taken, as a function of whether the previous trial is rewarded, and whether
the stage 2 state is the same or different from the previous trial

Importantly, the fact that the effect of the reward was not significant rules out the possibility

that the effect was due to the generalization of the values across slot machines.

Simulations of the flat and hierarchical models are presented in Figure 4.5b and c, respectively.

As predicted, the hierarchical structure captures the pattern of the subjects’ stage 2 actions

(the interaction between the reward and the same stage 1 action; p<0.001), whereas the flat

structure is not consistent with repeating the same action in stage 2 (p>0.05).

Previously, we focused on trials with a different slot machine to the one in the previous trial.

This was because, in this condition, flat and hierarchical accounts provide different predictions.

When the slot machine is the same, both accounts (flat and hierarchical) predict that being

rewarded in the previous trial increases the probability of staying on the same stage 2 action. In

addition to this prediction, the hierarchical account predicts that when the slot machine is the

same as the one on the previous trial, this increase should be higher than the increase when

the slot machine is different. This is because, when the slot machine is different, staying on

the same stage 2 action is driven by execution of the previous action sequence whereas, when

the slot machine is the same, executing either the previous action sequence or a goal-directed

decision at stage 2 can result in staying on the same stage 2 action.

As a consequence we looked at the effect of being rewarded in the previous trial, and whether
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the slot machine was the same as the one in the previous trial, on the probability of staying

of the same stage 2 action (in the trials in which stage 1 action was the same as the previous

trial).

Figure 4.6a shows the results. A significant main effect of reward was found (coefficient

estimate = 0.69; SE = 0.21; p<0.002) indicating that being rewarded in the previous trial

increases the probability of taking the same stage 2 action, irrespective of whether the slot

machine was the same as the previous trial or not, which is consistent with the hierarchical

account. In addition, we found a significant interaction between the effect of reward and

whether the slot machine being the same (coefficient estimate = 3.46; SE = 0.51; p<3e-11),

consistent with the finding that the probability of staying on stage 2 action was higher when

stage 1 action was the same.

Figure 4.6b shows the probability of staying on the same stage 2 action when the subject takes

a different stage 1 action. As predicted, because the subject did not execute the previous action

sequence, the main effect of reward was not significant (p>0.05) but the interaction between

reward and stage 2 state being the same was significant (coefficient estimate = 1.72; SE = 0.40;

p<3e-5) which means that subjects tend to take the same action on the same slot machine

after being rewarded, as predicted by both accounts.

4.3.3 Reaction times during habit execution

In the previous section we showed that if, after being rewarded, the subject repeats the same

stage 1 action, they are probably repeating the previous action sequence and, as such, they

tend to repeat stage 2 action as well. However, even in the situation in which the subject is

executing an action sequence there will be trials on which they might not repeat the same

stage 2 action. In such conditions, we should suppose that either (i) the subject took an

exploratory goal-directed action in stage 1, or (ii) the subject started an action sequence but

its performance was inhibited and control returned to the evaluation system in stage 2. In

both cases, the hierarchical account predicts that reaction times on trials in which the same
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Figure 4.7 – (a) Reaction time (RT) in stage 2 action (when the same stage 1 action was taken)
as a function of whether the same stage 2 action was taken and whether previous trial is
rewarded (only calculated for trials on which stage 2 state was different from the previous
trial). (b) Predicted reaction times by the model (a.u. : arbitrary unit).

stage 2 action is not taken should be higher.

Figure 4.7a illustrates these reaction times as a function of whether the previous trial was

rewarded and the subject takes the same stage 2 action (only in trials on which the slot

machine is different from that on the previous trial and the subject subsequently takes the

same stage 1 action). If the previous trial is rewarded, reaction times were lower when a

subject completes an action sequence than when stage 2 action was not executed as a part of

a sequence (coefficient estimate = -1.66; SE = 0.45; p<3e-4). Importantly, the effect was not

significant when the previous trial was not rewarded (p>0.05), which rules out the possibility

that the observed increase in the reaction times was because of the cost of switching to the

other stage 2 action.

We further asked whether the model can predict the reaction times in stage 2. As mentioned

above, at stage 1, the goal-directed process more frequently selects actions that have a higher

contingency to reward (either single actions, or action sequences). As such, if an action

sequence has a high value, it is likely to be selected for execution, and so we expect a low

reaction time in stage 2. For example, assume the subject has executed action A1 in stage 1,

and A2 in stage 2 and the aim is to predict whether A2 has a high or low reaction time. It can

be argued, if the value of the A1A2 action sequence is high, then it was probably executed in
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stage 1, and thus the execution of A2 is part of an action sequence (A1A2) started in stage 1,

implying the subject should show a low reaction time. In general we assume that the reaction

time in stage 2 is inversely related to the value of the action sequence that contains that action

(see section 4.2.3.3). In the case of this example we will have:

RT −1 ∝ probability of executing action sequence A1A2

Based on this, we calculated the predicted reaction time of the action taken by the subject in

the conditions shown in Figure 4.7a. The results are shown in Figure 4.7b. As the figure shows,

the predicted reaction times by the model are consistent with the pattern of reaction times

observed in the data.

In general, the above analysis of stage 2 performance and this analysis of reaction times

implies that (i) when the previous trial is rewarded, (ii) the same stage 1 action is taken, and

(iii) the reaction time is low, then the subject is most likely performing an action sequence. As a

consequence it is expected to repeat the same stage 2 action, even on a different slot machine

to the one in the previous trial. In order to more closely examine this relationship we used

conditional inference trees and partitioned stage 2 actions into whether they involved staying

or switching to the other action based on the above three factors (see section 4.2.2). The results

are shown in Figure 4.8. As the figure shows, when the previous trial was not rewarded (node #

1 ‘no reward’ condition), staying on the same stage 2 action was independent of either whether

stage 1 action was repeated or the reaction time was low (p>0.05; permutation test). If the

previous trial was rewarded (node # 1 ‘reward’ condition) then, if the reaction time was high

(node #2 RT>0.437s) or the reaction time was low but the subject doesn’t repeat stage 1 action

(node #3 ‘different’ condition), then again stage 2 action was not repeated. Only when: (i) the

previous trial was rewarded, (ii) the subject took the same stage 1 action, and (iii) their reaction

time was low (node #3 ‘same’ condition), did the subject repeat stage 2 action, consistent with

the prediction of the hierarchical account.

106



4.3. Results

 

reward
p < 0.001

1

no reward reward

n = 1032

sw
itc

h
st

ay

RT
p < 0.001

2

0.437 0.437

stage 1 action
p < 0.001

3

same different

RT
p = 0.031

0.379 0.379

n = 109

sw
itc

h
st

ay

n = 74

sw
itc

h
st

ay

n = 23
sw

itc
h

st
ay

n = 588

sw
itc

h
st

ay
0

0.2

0.4

0.6

0.8

1

Stay probability on second stage action 

Figure 4.8 – Partitioning the probability of staying on the same stage 2 action (stay: staying
on the same stage 2 action; switch: switching to the other stage 2 action) as a function of (i)
reward on the previous trial (node #1), (ii) whether the same stage 1 action is taken (stage
1 action; node #3), and (iii) reaction times (RT). ‘n’ represents the number of data points;
p-values are calculated using a permutation test.
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4.4 Behavioral modeling: Bayesian model selection

The results described in the previous sections suggest that a hierarchical structure better

characterizes the effect of feedback from the previous trial on performance on the subsequent

trial. However, choices are generally guided by the feedback from all previous trials, not

just the immediately prior trial. As such, it is still to be established which framework better

captures behavior in this more general condition.

We used a Bayesian model selection method to establish which framework produces choices

that are the most similar to the subjects’ actions. Both flat and hierarchical architectures have

different variants with different degrees of freedom. As such, we compared a family of flat

models with a family of hierarchical models (Penny et al., 2010), where each family consists of

a complex model, and its nested simpler models. The results (Table 4.1) show that, given the

subjects’ data, the hierarchical family is more likely than the flat family to produces choices

similar to those made by the subjects. We found that the exceedance probability in favor

of the hierarchical family was 0.99 meaning, roughly, that we can be 99% confident that the

hierarchical family generated the observed data.

In the hierarchical family, the probabilities of taking actions in stage 2 are partially based

on the probability of taking an action sequence in stage 1. As these stage 2 choices are the

canonical difference between the two families, we expected that removing the effect of action

sequences on stage 2 choices would reduce the fit of the hierarchical account to data. Thus

we generated a family of hierarchical models similar to Table 4.1. but with the effect of action

sequences on stage 2 actions removed, and compared the generated family with the family

of hierarchical models presented in Table 4.1 (see section 4.2.3.3). Results indicated that the

exceedance probability in favor of the family in which the performance of action sequences

was reflected in stage 2 choices was 0.99, confirming that the selection of an action sequence

in stage 1 increased the probability of taking the second element of the action sequence in the

next stage.

Table 4.1 represents the model comparison results within each family. The parameter estimates
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Table 4.1 – Model comparison between hierarchical and flat families. H: Hierarchical; F: Flat.
Shown for each model: negative log model evidence − log(P (D|M)); a pseudo-r statistic (p–r 2)
which is a normalized measure of the degree of variance accounted for in comparison to a
model with random choices; the number of subjects favoring the best fitting model based on
the model evidence; The exceedance probability which represents the probability that each
model (or family) is most likely among alternatives over the population. *best fitting model in
each family. ** best fitting model.

In each family In total

Family Free parameters -log p(D|M) psudo-r 2
number
favoring

best
model

Exceedance
probability

Exceedance
probability

number
favoring

best
model

Exceedance
probability

β,η1,k1 4219.6 0.26 12 0.000 0.004 12
β,η1,k1, w 4092.7 0.29 13 0.000 0.003 13
β,η1,k1,k2 4189.3 0.27 12 0.001 0.005 12
β,η1,k1,η2 4127.9 0.29 11 0.003 0.013 11
β,η1,k1, w,k2 4074.9 0.30 11 0.002 0.011 11
β,η1,k1, w,η2 4078.0 0.30 10 0.004 0.011 10
β,η1,k1,k2,η2 4110.3 0.29 11 0.000 0.004 11

H

β,η1, w,k1,k2,η2 4058.7 0.3 - 0.986* 0.911** -

0.993

β1,η,k, w 4212.0 0.27 14 0.004 0.002 14
β1,η,k, w,β2 4212.5 0.27 12 0.004 0.004 13
β1,η,k, w,λ 4168.6 0.28 - 0.697* 0.006 12
β1,η,k, w,α1 4201.1 0.27 12 0.005 0.002 14
β1,η,k, w,β2,λ 4173.1 0.28 9 0.032 0.006 11
β1,η,k, w,β2,α1 4198.4 0.27 11 0.007 0.003 13
β1,η,k, w,λ,α1 4174.2 0.28 11 0.049 0.002 12

F

β1,η,k, w,β2,λ,α1 4169.4 0.28 10 0.199 0.005 12

0.006

for the best fitting model from each family in terms of the exceedance probabilities (Stephan et

al., 2009) are presented in Table 4.2. The best fitting models from each family were simulated

in the task conditions to produce Figure 4.4 and Figure 4.5.

Table 4.2 – Best fitting parameter estimates for each family across subjects.

Hierarchical Flat
Parameter First Quartile Median Third Quartile Parameter First Quartile Median Third Quartile

β 4.24 5.80 6.96 β1 1.64 2.33 3.44
η1 0.82 0.89 0.95 η 0.65 0.84 0.93
k1 1.25 1.66 2.25 k 0.84 0.94 1.40
w 0.25 0.46 0.62 w 0.40 0.59 0.68
k2 -0.50 0.30 0.70 λ 0.69 0.93 0.95
η2 0.14 0.29 0.77 - - - -
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4.5 Discussion

Although prior research has suggested that goal-directed and habitual actions should be

conceived as single step actions organized according to a flat architecture (e.g. (Daw et al., 2005,

2011)), the results of the current experiment found that: (i) human subjects combined actions

together to form action sequences, as revealed by the open-loop execution of sequences of

actions and reaction times in the current task, and, therefore, that action sequences constituted

a necessary component of behavior; (ii) the use of action sequences by human subjects was

sufficient to explain habitual decisions on this task, meaning choices that were not guided

by action-outcome contingencies; and, (iii) a goal-directed system assessing both actions

and action sequences in a hierarchical manner explained behavior better than a flat model

attributing habits to model-free evaluation.

Furthermore, although hierarchical models have had a longstanding role in decision-making

(Lashley, 1951; Miller et al., 1960; Newell & Simon, 1963; Botvinick & Plaut, 2004; Estes, 1972;

Schneider & Logan, 2006; Cooper & Shallice, 2006, 2000), here we provide direct experimental

evidence for the role of these models in understanding the operation and interaction of

goal-directed and habitual actions. We used a version of the two-stage discrimination task

described by Daw et al (Daw et al., 2011) in which the ambiguity of stage 1 predictions by both

actions and stimuli was reduced by removing the explicit predictive cues of previous versions.

Using this task we found, as previously described, that action selection in stage 1 reflected a

mixture of goal-directed and habitual strategies. The two accounts diverge with respect to the

status of stage 2 actions; whereas the flat architecture/single step action perspective predicts

that the status of action selection in stage 2 should be independent of the first, we found that

this was not true; habitual action selection in stage 1 predicted continued habitual selection

in stage 2 as a sequence of actions, a finding predicted by a hierarchical goal-directed/habit

sequence account (Dezfouli & Balleine, 2012). According to this account, at the top of the

hierarchy the goal-directed system evaluates and selects goals and then habits efficiently

implement decisions made by the goal-directed system in the form of action sequences. In
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comparison to the other accounts, which posit a flat interaction between these two systems,

we found that the hierarchical account provides more accurate predictions both in terms

of the choices of the subjects, and in terms of their reaction times during action selection.

When performing according to a habitual sequence of actions, subjects tended to repeat

both previously reinforced sequences and to perform these sequences at significantly lower

reaction times than when their actions were goal-directed.

4.5.1 Hierarchical decision-making and the two-stage task

A number of studies have previously investigated the relationship between hierarchical RL

and decision-making (Doya, 1999; Botvinick et al., 2009; Ribas-Fernandes et al., 2011; Diuk,

Tsai, Wallis, Botvinick, & Niv, 2013; Frank & Badre, 2012; Badre & Frank, 2012; Reynolds

& O’Reilly, 2009; Holroyd & Yeung, 2012). We extended these studies by showing how the

formation of action sequences can lead to decisions that are insensitive to (i) the values of the

outcomes (Dezfouli & Balleine, 2012) and (ii) the contingency between specific actions and

their outcomes (i.e. the key press–slot machine associations in this study), the two defining

characteristics of the habitual behavior.

The other difference between the hierarchical RL model that we used here and previous

work is that we assumed that performance of action sequences is insensitive to the feedback

received during execution (Pew, 1966; Keele, 1968), whereas, in general, previous work based

on hierarchical RL theory has assumed that action selection is based on the state of the

environment (Barto & Mahadevan, 2003; Dietterich, 2000; Sutton et al., 1999). Within this

latter framework, one can posit that habits are hierarchically organized actions but that their

performance is sensitive to the feedback received after execution of each individual action.

Although this class of models can explain habitual behavior executed in stage 1 of the current

task, this approach predicts that stage 2 actions will, ultimately, be similar to those of the flat

architecture discussed earlier, which is not consistent with the data observed in this study.

In the hierarchical account advanced here we assumed, based on the previous findings in
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rodents (Balleine, Garner, Gonzalez, & Dickinson, 1995; Ostlund et al., 2009), that, similar

to single actions, action sequences are also under goal-directed control. Alternatively, it is

possible that the value of any action sequence is learned in a model-free manner (for example

using Q-learning) without learning the identity of the particular outcome that it predicts.

Our results are silent with respect to this latter assumption; nevertheless, whatever the case,

the conclusion that habitual responses in stage 1 were due to the execution of an action

sequence still holds. One way to study this issue is to add another choice to the end of the task,

making it a three stage task, and then asking whether performance of for example A1A2 action

sequence is goal-directed or habitual, which can be answered by devaluation of outcome of

A1A2, or using the same task structure that we used here to distinguish habitual and goal-

directed actions. However, again, if it were found that the selection of the A1A2 sequence was

not sensitive to environmental contingencies, or outcome values, this could be due either

to the formation of A1A2A3 action sequence (since outcome of A1A2 falls within sequence

boundaries (Dezfouli & Balleine, 2012)), or it could be because action sequences are open

to model-free evaluation. Similar to the study here, these accounts can be distinguished by

examining whether the subject selects A3 during habitual selection of A1A2 irrespective of the

outcome of A1A2 performance. If so, it can be concluded that the observed habitual behavior

is due to the formation of an action sequence, not model-free RL. Along the same lines, it is

possible to assume that, in the current study, stage 2 habitual responses were guided by a flat

model operating in parallel to the hierarchical model we propose here. Again, although the

task results are neutral with respect to this assumption, adding a parallel model increases the

model’s complexity, is not required to account for the current data, and so it necessity should

be motivated by additional behavioral data.

It might also be argued that, although the current predictions apply to the modified two-stage

discrimination task used here, they may not apply to previous versions of the task. In previous

versions, subjects at each stage chose between two symbols instead of two fixed actions and

the symbols moved from side to side at each trial ensuring there was no consistent mapping

between the button presses and the symbols. There are two points to make here: First, the
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fact that specific (e.g. left- or right-hand) actions are degraded in their contingency with the

outcome on this version of the task raises the issue of stimulus control; either the stimuli

exclusively mediate the predictions of stage 2 outcomes or the concept of action needs to be

made more liberal to the selection of a symbol. The former approach would, of course, render

the task Pavlovian, rather than instrumental, and the applicability of model-based control

problematic. Second, and relatedly, in order to apply our hierarchical model to the earlier task,

we also need to extend the concept of an ‘action’ from pressing a button (as in our task), to

selecting a symbol; if this is accepted then, using the logic laid out earlier, the hierarchical

goal-directed/habit sequences model can explain the results of the task. In the prior version of

the task, symbols in stage 2 were different from each other, for example in one of stage 2 states

subject could choose between symbols ‘C’ and ‘D’, but in the other stage 2 state, the choice

was between symbols ‘E’ and ‘F’. As such, we cannot directly assess the probability of staying

on the same stage 2 action if the subjects end up in a different stage 2 state. Nevertheless, the

hierarchical theory predicts that if the subject selects same stage 1 action, and ends up with

the same stage 2 state and selects the same stage 2 action, then the reaction time will be faster

than when they end up with in a different stage 2 state.

Here we assumed that action sequences were available to the subjects from the beginning

of the training, and we ignored that such action sequences needed to be acquired through a

learning process, as described in the previous chapter. This was mainly because we assumed

that the human subjects that participated in the study were generally familiar with taking a

sequence of button pressing on a computer keyboard, and so they could develop such action

sequences very quickly. Therefore, we didn’t include the process of action sequence learning

here.

4.5.2 Deviations from prediction and the interpretation of the two-stage task

Predictions of both models (flat and hierarchical) were found to deviate from the behavior

of the subjects in two cases. In the first case, if, after being rewarded, the subject switches to

the other action then both accounts predict that the probability of staying on stage 2 action
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should be on average 0.5 (Figure 5b,c). However, in the actual data it is below 0.5 (Figure

5a). In the second case, both accounts predict that the difference between stay probability in

common and rare transitions should be equal in both the reward and no-reward conditions

(Figure 4a,b), however, as Figure 3c shows, the difference is larger in the reward condition. It

is possible to capture these two deviations by adding more free parameters to the models;

however, since the deviations exist for both the flat and hierarchical families and so do not

affect the comparison between them, we didn’t add further parameters to account for these

two deviations.

As in previous work, we interpreted the interaction between being rewarded and the type of

transition in the previous trial (rare or common) as the evidence for goal-directed behavior.

It should, however, be noted that, if there is a strong initial bias in total possible reward for

one action vs. the other at the first-stage, and reward transitions are slow, then it is possible to

observe an interaction between reward and transition type without engaging a goal-directed

system. As a consequence of the higher overall probability of reward for taking, say, action

‘A1’ in stage 1, the subject can establish that action has a higher value (without relying on the

task structure) and so will take that action, i.e. ‘A1’, more frequently than the other, i.e. action

‘A2’, which means that the probability of staying on action ‘A1’ will be higher than action ‘A2’

in general. At the same time, because action ‘A1’ is better than the other action, most of the

rewarded common transitions and unrewarded rare transitions result from taking action ‘A1’.

Likewise, most of the unrewarded common transitions and rewarded rare transitions will be

the result of taking action ‘A2’. This fact, and the fact that stay probability on action ‘A1’ is

generally higher, will produce a reward-transition interaction, without having a goal-directed

system, at least in the period that action ‘A1’ is better than the other action. This bias is

proportional to how fast the bias in stage 1 values changes and cannot account for the current

data. It should also be noted that, as the comparison between the flat and hierarchical model

families was based on model fit, those results don’t suffer from this problem.
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4.5.3 Inhibitory interactions between goal-directed and habitual control

Although, on the hierarchical goal-directed/habit sequence model advanced here, habits are

integrated with the goal-directed process to reach the goals selected by this latter system,

competition can also occur between these two systems when the further execution of an

ongoing habit sequence is found to be inappropriate by the goal-directed system and it

attempts to take back control. This type of competition resembles the situation in an inhibitory

control task, such as the stop-signal task, in which subjects must respond quickly when a

‘go’ signal appears but must stop the action if a stop-signal appears (Verbruggen & Logan,

2008). In the context of our task, seeing a slot machine at stage 2 is the ‘go’ signal, which

causes the execution of the next action in the sequence. The stop signal comes from the

goal-directed system when the pending response is identified as inappropriate. Consistent

with this conception in conditions in which sequence performance is inhibited, reaction times

are slower. In the stop-signal task, subjects are typically able to inhibit their responses when

the stop signal is temporally close to the ‘go’ signal. Although the stop signal task is more

global in terms of response inhibition, whereas in the current task the inhibition is specific

to one as opposed to an alternative action, this implies that the ability of the goal-directed

system to override habits depends on how fast it calculates the correct action: the faster it

calculates, the higher the chance of taking control back before action execution.

4.5.4 Habit sequences vs. stimulus-response habits

It is also interesting to consider the relationship between habit sequences and stimulus-

response (S-R) theories of habit learning. The S-R theory of habit learning maintains that

habits are responses that are elicited by antecedent stimuli rather than their consequences

(Guthrie, 1935; Hull, 1943). Such S-R theories maintain that stimuli trigger their associated

behavioral responses due to an association between the stimulus and the response. According

to the habit sequence theory, however, the stimulus instead signals that the next action in the

sequence should be executed; i.e., in the context of our task, seeing a slot machine signals

that it is time for the next action to be executed. Although the next action to be executed
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is determined by the sequence and the stimulus does not play a role in the selection of the

next response, the response is still stimulus-bound to some extent (e.g., for timing and motor

coordination) and is elicited only when the next expected stimulus is encountered. Never-

theless, these two theories provide different predictions. For example, S-R theory predicts

that, in the presence of the appropriate stimulus the response will be performed, irrespective

of whether that stimulus was encountered as part of the habit sequence or not. In contrast,

habit sequence theory predicts that the individual will respond to the stimulus only when the

appropriate habit sequence has already been launched by the goal-directed system.
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5 Hierarchical decision-making

in rats

As mentioned in chapter 2, evidence indicates that goal-directed actions, i.e., actions that are

taken by an agent to attain a certain goal, are crucial components of decision-making pro-

cesses in animals and humans. The source of these actions is suggested to be a model-based

reinforcement learning system in the brain, which learns the contingencies between actions

and the states of the environment. Such a decision-making process, however, requires an

agent to firstly learn the correct representation of the task space, and secondly, hierarchically

organize actions in order to make goal-directed decision-making scalable to multi-stage and

complex environments. Here, using a sequential decision-making task in rats, we show that

the profile of choices made by animals reveals a gradual shift from a simple representation of

the task space, to a more complex form, which matches the true sequential structure of the

task. Subsequently, we show that within this multi-stage representation, animals engage in a

hierarchical model-based decision-making process. Furthermore, results of a Bayesian model

comparison procedure, consistent with the behavioral results, confirm that animals are using

hierarchical model-based reinforcement learning. Therefore, we provide evidence supporting

the hypothesis that the decision-making processes in the brain can be conceptualized using

model-based hierarchical reinforcement learning and we also provide a new experimental

protocol in rats, that can be used to measure the operation of these decision-making processes.
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5.1 Introduction

According to experimental evidence, there is a combination of multiple reinforcement-learning

(RL) systems behind the value-based decisions made by humans and other animals (Balleine

& O’Doherty, 2010; Daw et al., 2005; Dolan & Dayan, 2013; Doya, 1999; Keramati et al., 2011).

These systems have partly overlapping neural and computational substrates and choices made

by each system exhibit dissociable behavioral characteristics. Recently, it has been suggested

that these multiple systems are organized in a hierarchical structure in which higher-level

systems make high-level plans that are then delegated to the lower-level processes for the

purpose of implementation (Botvinick et al., 2009; Dezfouli & Balleine, 2013; Frank & Badre,

2012; Holroyd & Yeung, 2012; Ito & Doya, 2011). As for example, one might decide between

making tea or coffee (high-level planning) and, if tea is chosen, the lower-lever processes

repeat the sequence of actions that are used for making tea.

The above description of the hierarchical organization of planning systems broadly maps onto

hierarchical model-based RL (HMB RL) (Barto & Mahadevan, 2003; Botvinick & Weinstein,

2014)(see section 2.4.5). The model-based component of this framework is a computational

description of what is known in the animal learning literature as goal-directed instrumental

conditioning (C. D. Adams, 1982; Dickinson & Balleine, 1994; Tolman, 1948) (section 2.3). For

action selection in a goal-directed manner, an agent deliberates over the consequences of

available actions and selects the actions that are predicted to lead to the desirable outcomes

(or goals). Such an action selection process, however, is known to suffer from the ‘curse

of dimensionality’, i.e., model-based RL does not scale to complex environments in which

the agent needs to iterate over a large number of future states and actions for decision-

making. HMB RL (Barto & Mahadevan, 2003) offers a solution to this problem by introducing

temporally extended actions. This notion is related to psychological studies of motor control

and skill learning according to which humans and other animals form action chunks or action

sequences by concatenating actions together (Lashley, 1951; Rosenbaum, 2009; Smith &

Graybiel, 2014) (section 2.4.4). After formation, these action sequences will serve the agent to
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reach its goals without the need to make decisions for each component of the action sequence

separately. In this way, a HMB RL evaluates all the actions, including actions sequences, and

selects one of them for execution (Dezfouli & Balleine, 2012).

Conceptually, predictions from HMB RL regarding how decisions are made and executed can

be divided into four dimensions: Firstly, HMB RL predicts that actions concatenate and make

action sequences that are performed as a single response unit. This prediction is supported by

a body of evidence that shows that humans (Rosenbaum, Cohen, Jax, Weiss, & van der Wel,

2007; Wymbs et al., 2012), non-human primates (Tanji, 2001), and rodents (Jin & Costa, 2010)

are able to form and execute sequences of actions in this way. The markers of such response

units are usually taken to be (i) faster reaction times between the elements of the action

sequences and (ii) feedback-free operation of the sequences, meaning that, once started, the

sequence will run to its end irrespective of the feedback received after the performance of

each individual action (Keele, 1968; Pew, 1966) (section 3.1).

Secondly, HMB RL implies that an action sequence is evaluated as a whole, not based on its

individual components. Providing evidence for this prediction requires a choice task in which

the disjoint evaluation of actions predicts different choices rather than evaluating a sequence

of actions as a whole. Here, direct studies are scarce (Dezfouli & Balleine, 2013; Ostlund et al.,

2009), although there is evidence from spatial navigation literature (Solway et al., 2014; Wiener

& Mallot, 2003).

Thirdly, according to HMB RL single actions are evaluated in a goal-directed manner. This

prediction is supported by outcome revaluation experiments in humans and rodents (Balleine

& O’Doherty, 2010), which show that the choice of actions is sensitive to changes in the value

of the outcome earned by a specific action.

Fourthly, HMB RL requires that, as with single actions, action sequences are also evaluated in

a goal-directed manner, meaning that, for example, a person used to starting a sequence of

actions in order to attain a certain goal will no longer start that sequence if the goal is no longer

desirable. This property extends the second point above such that an action sequence is not
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only evaluated as a whole, but also with respect to its ultimate outcome, which is supported

by outcome devaluation experiments in rats (Ostlund et al., 2009).

Finally, there is a hidden assumption for using HMB RL as a model of goal-directed actions

(or any other model-based RL system): an agent should be able to build a sequential repre-

sentation of the task space, i.e., the several intermediary needed to reach the goal such that

outcomes are not necessarily the immediate consequence of actions. Such ability has been

demonstrated in humans (e.g., (Daw et al., 2011)), rodents (Ostlund et al., 2009), and monkeys

(e.g., (Mushiake et al., 2006)).

As such, there is independent evidence regarding different aspects of a HMB RL in prior studies,

however, these aspects need to be demonstrated in a single decision-making task to confirm

the integrated operation of HMB RL as the backbone of the decision-making processes in

humans and animals. Here, we target the first three properties of HMB RL, the aim of the

current series of experiments is, therefore, to provide concurrent evidence for the operation

of these properties of HMB RL in rats. This aim requires a multi-stage decision-making task,

which can potentially engage action sequences and, on the other hand, the task must involve

changes in the value of the outcomes, in order to evaluate the operation of the model-based

component of the structure. Such a task has previously been developed in humans (Daw et

al., 2011; Dezfouli & Balleine, 2013) (chapter 4), and here we translated it to an experimental

protocol in rats.

We firstly show that, without any explicit instructions about the structure of the task (which

obviously cannot be provided in rats), early in training subjects made decisions based on the

assumption that the environment is composed of a single stage. Later in training they learned

the true state-space of the task, and made decisions accordingly. After this stage, we show that

subjects executed (first prediction), and evaluated (second prediction) action sequences as a

single response unit and, furthermore, the selection of the actions was goal-directed (third

prediction).
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5.2 Materials and methods

5.2.1 Subjects and apparatus

Eight experimentally naive male Hooded Wistar rats served as subjects in each experiment

(4 x 8 rats in total). All animals were housed in groups of three and handled daily for one

week before training. Training and testing took place in 32 Med Associates operant chambers

housed within sound- and light-resistant shells. The chambers were also equipped with a

pellet dispenser that delivered one 45 mg pellet when activated (Bio-Serve). The chambers

contained two retractable levers that could be inserted to the left and the right of the magazine.

The chambers contained a white noise generator, a Sonalert that delivered a 3 kHz tone, and a

solenoid that, when activated, delivered a 5 Hz clicker stimulus. All stimuli were adjusted to

80 dB in the presence of a background noise of 60 dB provided by a ventilation fan. A 3 W, 24 V

house light mounted on the wall across from the levers and magazine illuminated the chamber.

Microcomputers equipped with MED-PC software (Med Associates) controlled the equipment

and recorded responses. Animals were food deprived one week before starting behavioral

procedures. Feeding was such that rats were maintained at 90% of their free-feeding weight.

The animals were fed after the training sessions of the day and had ad libitum access to tap

water while in the home cage. Each training session (except magazine training sessions)

started with insertion of the levers, and ended with the retraction of the levers.

5.2.2 Statistical analysis

We used R (R Core Team, 2014) and lme4 packages (Bates & Maechler, 2014) to perform a

linear mixed effects analysis. In all the analyses, all the fixed effects (including intercepts) were

treated as random effects varying across subjects. For the analysis that included more than

one session, random effects were assumed to vary across sessions and subjects in a nested

manner. Confidence intervals (CI) of the estimates were calculated using the ‘confint’ method

of lme4 package with the ‘Wald’ parameter.
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Figure 5.1 – Each experiment started with two magazine training sessions (step 1), followed by
several lever training sessions (step 2), in which animals learned that pressing each lever (left
and right levers corresponding to ‘L’ and ‘R’ in the figure) would delivered a reward. The next
step was discrimination training (step 3), in which animals learned that when stimulus S1 was
presented action ‘L’ should be taken to earn a reward, and when S2 was presented action ‘R’
should be taken to earn a reward. The results of this phase of the experiments is presented in
section 5.3.1. The final step of the experiments was two-stage training, in which animals were
trained on a two-stage decision-making task. This training phase comprised multiple training
sessions, and in the middle or at the end of these training sessions several probe sessions were
inserted. The result of the training sessions and probe sessions are presented in two separate
sections. The result of the two-stage training is presented in section 5.3.2 and the result of
the probe sessions is presented in sections 5.3.4, 5.3.5, 5.3.6 and 5.3.7. The structure of the
two-stage task and the probe sessions is explained in Figure 5.2a,b,c.

5.2.3 Behavioral procedures

We conducted four experiments, each of which had several steps. The general structure of

the experiments was similar and it is depicted in Figure 5.1. Below we explain each step and

highlight the differences between the experiments.

Each experiment started with two sessions of magazine training in which grain-based food

pellets were delivered into the food magazine. A total of 30 pellets were delivered, on average

one pellet every 60 seconds. After this stage, animals were trained on a continuous reinforce-

ment schedule, in which each lever press led to the delivery of a pellet. Each lever was trained

in a separate session, and the total number of outcomes was limited to 60 per session. The

total duration of the sessions was limited to 60 minutes. Animals were trained one session on

the left lever, and one session on the right lever. In Experiments 1&3, animals received one

more session on each lever, and in Experiments 2&4 they received one more session in which

the levers were presented in alteration every ten minutes (each lever two times).
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Next, animals were trained on the discrimination phase. Each session started with the pre-

sentation of a stimulus. The stimulus remained presented until the animal took an action

(either pressing the left or right lever). Taking an action caused the stimulus to turn off, and

it could lead to the delivery of the outcome or it could have no consequence depending on

the action taken and presented stimulus. For one of the stimuli, taking the left action led to

reward, and for the other stimulus taking the right action led to reward. Levers and stimuli

were counterbalanced across subjects. After an action was chosen, there was a 60 second

inter-trial interval (ITI), and after that, the next trial started with the presentation of the next

stimulus, again chosen randomly. The duration of each session was 90 minutes, with no limit

on the maximum number of earned rewards. In Experiments 1-3, the stimuli were tone and

clicker, and in Experiment 4, the stimuli were constant and blinking house lights (5 Hz).

Next, subjects received training on the two-stage task depicted in Figure 5.2a in which ani-

mals first made a binary choice at stage 1 (signaled by the illumination of the house light in

Experiments 1-3), after which they transitioned the stage 2 states, in which again they made

another binary choice that could lead to reward delivery, or no-reward. After this, there was an

ITI started, and then the next trial stared with the presentation of the house light (Experiments

1-3). The ITI in Experiments 1&2 was 20 seconds, in Experiment 3, 5-sec, and in Experiment 4

it was 0-sec. Stage 2 states were signaled by the stimuli trained on the previous phase of the

experiment. In each trial, only one of the stage 2 states led to reward, whereas the other state

would not lead to a reward irrespective of the choice of actions. The stage 2 state that earned a

reward frequently switched between the states during the course of a session (Figure 5.2b).

In Experiment 1, this switch occurred every time four outcomes were received since the last

switch (with a maximum 40 outcomes in a session), which later in the training increased to

every eight outcomes (with a maximum 48 outcomes in a session), as depicted in Figure 5.4b.

In Experiment 2, the switch occurred whenever a randomly selected number of outcomes

were received since the last switch. This random number was uniformly drawn from range

8-16 (maximum 48 outcomes in a session). In Experiment 3, the switch occurred every fourth

outcome received (maximum 50 outcomes in a session). In Experiment 4, the switch occurred
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with a probability of 0.14 whenever the subject received an outcome (maximum 60 outcomes

in a session). Furthermore, in Experiments 1&2 because the ITI was long, animals received

a pre-training phase on the two-stage task in which the reward in the stage 2 state was fixed

during a session, and was changed across sessions. Subjects received 10 training sessions in

this condition. Similarly, in Experiment 2, subjects received two pre-training sessions in which

they could earn a reward in both stage 2 states.

Animals were trained on the two-stage task (Figure 5.2b) for 69 sessions in Experiment 1, 57

sessions in Experiment 2, 60 sessions in Experiment 3, and 40 sessions in Experiment 4. In

the middle of, or at the end of these training sessions, animals were given probe sessions in

which stage 1 actions led to stage 2 states in a probabilistic manner. One of the stage 1 actions

commonly led to one of the stage 2 states (80% of the time), and the other stage 1 action

commonly led to the other stage 2 state (Figure 5.2c). For the last probe session in Experiments

1&3, the probability that stage 1 actions led to stage 2 states was 50%. The exact positions of

probe sessions for Experiments 1-4 are depicted in Figure 5.4b, Figure 5.5b, Figure 5.6b, and

Figure 5.7b respectively. The probe sessions are marked with ‘*’ close to their labels. Hereafter,

we will refer to training sessions by their labels. For example ‘sx’, refers to the xth session of

training (starting from the very first training session, which was magazine training).

5.3 Results

We conducted four experiments, each of which had several phases. The general structure of

the experiments was similar and is depicted in Figure 5.1. The aim of the first phase of training

was to train animals to discriminate between the states of the environment (corresponding to

step 3 in Figure 5.1); the results of this phase are presented in section 5.3.1 for all experiments.

In the second phase, animals were trained on the two-stage task, which comprised multiple-

training sessions. In the middle, or at the end of these training sessions several probe sessions

were inserted. The results of the training sessions and probe sessions are presented in two

separate sections. In the first section (section 5.3.2), we present the overall profile of the

124



5.3. Results

a)
L

S2

R

S1

>0s >0s

ITI

S0

S1S2

O

L R

L R L R

X X X

S0

S1S2

O

L R

L R L R

X X

reversal
S0

S1S2

O

L R

L R L R

X X X

S0

S1S2

O

L R

L R L R

X X X

reversal
b) c)

0.00

0.25

0.50

0.75

1.00

reward no reward

%
st

ay

reward no reward
common rare

0.0

0.1

0.2

reward no reward

%
st

ay

stay switch

d) e) f )

X

Figure 5.2 – (a) Flow of events in the two-stage task. Trials started with the illumination of the
house light which signaled state S0 (Experiments 1-3). After an action was taken (‘L’ or ‘R’),
the house light turned off, and a stimulus started (S1 or S2). Next, subjects could take another
action (‘L’ or ‘R’), which could lead to the delivery of the outcome, or it might have no outcome.
(b) Stage 1 actions led to the stage 2 stimuli in a deterministic manner. The rewarding stage 2
state changed frequently (reversal). ‘O’ represents outcome, and ‘X’ represents no-outcome.
(c) In probe sessions, stage 1 actions led to the stage 2 states in a probabilistic manner. Taking
action ‘L’ led to state ‘S2’ commonly (80% of the times), and to state ‘S3’ rarely (dashed lines).
(d) Prediction of a pure model-based RL, which decides between choosing actions ‘L’ and ‘R’
at stage 1. This model predicts an interaction between staying on the same stage 1 action,
and earning a reward in the previous trial. (e) Prediction of a pure hierarchical model-based
RL which chooses between different action-sequences at stage 1 (LL, LR, RL, RR). This model
predicts the main effect of whether reward was received in the previous trial. (f) Prediction of
hierarchical model-based RL regarding the stage 2 choices, when the stimulus in the next trial
is different from the current trial. This model predicts that when the previous trial is rewarded,
if the subject stays on the same stage 1 action (stay), it will also stay on the same stage 2 action,
even if the other stage 2 action should be selected. In panels (d,e,f) numbers are arbitrary and
for the purpose of illustration.

125



Chapter 5. Hierarchical decision-making in rats

animals’ choices over the entire training period of all four experiments, and we establish that

over the course of training, rats learned that the task is a two-stage decision-making process

(not a single stage task that turns out to be the rats’ a priori assumption). Next, we focus

on the probe sessions which provided specific predictions regarding HMB RL framework

(section 5.3.3), and we present the results of Experiments 1-4 in sections 5.3.4, 5.3.5, 5.3.6 and

5.3.7 respectively.

5.3.1 Learning to discriminate between states

In this phase of training, subjects learned to discriminate between the states of the environ-

ment (S1 and S2). States are signaled by the stimuli, e.g., presence of the tone signaled S1, and

the clicker signaled S2. The basis of the discrimination was the action that should be taken in

each state to earn a reward, i.e., in S1 pressing the left lever (action ‘L’ hereafter) was rewarded,

and in S2 action ‘R’ was rewarded. The probability of taking the correct action for each session

is depicted in Figure 5.4a, Figure 5.5a, Figure 5.6a, and Figure 5.7a respectively for Experiments

1-4, which shows that animals learned to take the correct action. This is indicated by the

results of a logistic regression analysis over all the sessions of each experiment, which revealed

a significant effect of intercept on taking the correct action (Experiment 1 :β=2.1 (CI: 1.51,

2.71), SE=0.30,p<1e-11; Experiment 2: β=1.79 (CI: 1.09,2.50), SE=0.35,p<1e-6; Experiment 3:

β=1.58 (CI: 0.80, 2.37), SE=0.40,p<e-4; Experiment 4: β=0.89 (CI: 0.60, 1.18) SE=0.14,p<1e-8).

In Experiments 1-3, the tone and clicker were used as stimuli, but in Experiment 4, a blinking

house light, and a constant house light were used as stimuli (for the reasons described below).

5.3.2 Learning a two-stage representation of the task

This phase of the training process had two aims. The first aim was for the subjects to learn

the two-stage logic of the task, i.e., the outcomes are not only the result of their immediate

actions (stage2 actions), but stage 1 actions also matter. As we will show, without training,

animals attribute outcomes to the most recent actions, ignoring the two-stage structure of

the environment. The second aim was to train subjects to select actions flexibly based on the
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Figure 5.3 – a) The task has two stages, b) however, animals are not aware of that and they
need to learn this by experiencing the task. Data shows that early in training animals assume
the task has only one stage. As a result they repeated the most rewarded action in the next trial.
It can be shown that this kind of representation predicts that the odds ratio of the probability
of staying on the same stage 1 action will be below one (please see the text for an example).
Later in the training after the animals built a correct representation of the task, then the odds
ratio of the probability of staying on the same stage 1 action went above 1.

feedback they received in recent trials, i.e., promoting high learning rates. To achieve this aim,

we designed a dynamic environment that deprived animals of rewards if they were selecting

actions solely based on the most recent reinforced actions (the first aim), or when actions were

rigid and not guided by feedback (the second aim). The flow of events in the task is depicted in

Figure 5.2a. Subjects first made a binary choice at stage 1 (stage S0), and then they transferred

to either the S1 or S2 states. Then they made another binary choice, which led to either reward

delivery, or no-reward. After an inter-trial interval, the next trial started with presenting the

stimulus that signaled state S0.

Reward of each action and transition between states is depicted Figure 5.2b. Taking action ‘L’

at stage 1 led to state S2 at the second stage, and taking action ‘R’ at the first stage led to state

S1. Taking action ‘L’ in S2, or ‘R’ in S1 was never rewarded (consistent with the discrimination

training phase), however the two other actions (‘R’ in S1, and ‘L’ in S2) could be rewarded. In

each trial, only one of the states led to reward, and the other state would not lead to a reward

127



Chapter 5. Hierarchical decision-making in rats

irrespective of the choice of actions. The reward-earning state changed frequently after several

outcomes were received. As a result of this design, taking a particular stage 1 action earned

outcomes for certain number of times, but after that, the rat needed to switch to the other

action, otherwise it would not have earned any reward at all.

For the illustration of the dynamic of subjects’ choices across training sessions, we first looked

at the effect of reward on staying on the same stage 1 action. In all the subsequent analysis,

we only included trials in which subjects in the previous trial made a correct discrimination

at stage 2, because it was unclear how subjects updated the value of state and actions when

they did not receive a reward because of an incorrect discrimination at stage 2 (which was not

rewarded in any case).

Results of Experiments 1-4 are depicted in Figure 5.4b, Figure 5.5b, Figure 5.6b, and Figure 5.7b

respectively. For each session of training, the figures show the odds ratio of staying on the

same stage 1 action after earning a reward on the previous trial. Odds ratios were calculated

using logistic regression analysis on the effect the reward had on staying on the same stage

1 action in the next trial. At the beginning of the training, as Figure 5.5b, Figure 5.6b, and

Figure 5.7b show, subjects not only did not show a tendency to take the same action after

earning a reward in the previous trial, but they showed a tendency to switch to the other action.

This effect is statistically significant in the first five sessions of Experiment 2 (sessions s20 to

s24; β=-0.25 (CI: -0.37, -0.13), SE=0.06, p<1e-4), Experiment 3 (sessions s15 to s19; β=-0.14

(CI: -0.29, -0.007), SE=0.07, p=0.039), and Experiment 4 (sessions s31 to s35; β=-0.68 (CI: -0.92,

-0.45), SE=0.11, p<1e-8); but, for Experiment 1, although the effects were in the same direction,

they are not statistically significant (sessions s26 to s30; β=-0.06, SE=0.04, p=0.161), probably

because of the pre-training that animals received in this experiment. In fact, this pattern of

choices (Experiments 2-4) is exactly what we expect to see when subjects are treating the task

as having only a single stage (Figure 5.3): subjects repeat the stage 2 action that was rewarded

in the previous trial, in stage 1 of the next trial, i.e., they attribute the reward to the most recent

action. This resembles to switching to the other stage 1 action after receiving a reward. For

example, assume that a subject has performed action ‘L’ at stage 1 and ‘R’ at stage 2 and has

128



5.3. Results

received a reward. In the next trial, since they are attributing the reward to the most recent

action (‘R’), they repeat this action in the next trial, which makes it seems as though they have

switched to the other action at stage 1.

Another indicator of whether actions are selected under a single-stage, or a two-stage repre-

sentation of the task, is the pattern of magazine entries. Figure 5.4c, Figure 5.5c, Figure 5.6c,

and Figure 5.7c show the probability of magazine entry depending on whether subjects stayed

on the same stage 1 action and whether the previous trial was rewarded. As the figures show,

whenever the previous trial is rewarded, if the subject takes the rewarded stage 2 action of the

previous trial in stage 1 of the next trial (or equivalently switch to the other stage 1 actions),

then they enter the magazine after that action, suggesting that they treated the task as a single

stage decision process. This is indicated by the significant interaction between staying on

the same stage 1 action and earning a reward in the previous trial. In the first five sessions of

training, this effect was significant in all of the experiments: Experiment 1 (sessions s26 to

s30; β=-0.25 (CI: -0.38, -0.12), SE=0.06, p=1e-4), Experiment 2 (sessions s20 to s24; β=-0.14 (CI:

-0.25, -0.03), SE=0.05, p=0.012), Experiment 3 (sessions s15 to s19; β=-0.25 (CI: -0.37, -0.14),

SE=0.05, p<1e-4), and Experiment 4 (sessions s31 to s35; β=-0.19 (CI: -0.33, -0.06), SE=0.06,

p=0.004).

5.3.3 Predictions of HMB RL at stage 1 and stage 2 choices

In the previous phase of training, stage 1 actions led to stage 2 actions in a deterministic

manner, i.e., taking ‘L’ at stage 1 always led to state S2, and taking ‘R’ at stage 1 always led

to state S1 (Figure 5.2b). These are called ‘common’ transitions. Both during and at the end

of these training sessions, we inserted several probe sessions that also included some ‘rare’

transitions in which a stage 1 action led to the other stage 2 action, i.e., taking ‘L’ led to state ‘S1’,

and taking ‘R’ led to state ‘S2’ (Figure 5.2c)(Daw et al., 2011). These are called rare transitions

because they constitute 20% of the trials. Nevertheless, they are important because they allow

us to detect the operation of the model-based and hierarchical decision-making by analyzing

choices at stage 1 and stage 2 of the task.
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Following (Daw et al., 2011), the main analysis regarding stage 1 choices is to look at the

probability of staying on the same stage 1 action, depending on whether the previous trial

was rewarded and whether the transition in the previous trial was common or rare. Pure

model-based RL, which is choosing between actions ‘L’ and ‘R’ at stage 1, predicts that when-

ever subjects receive a reward in the previous trial, if the transition in the previous trial was

common, then they will stay on the same stage 1 action in the next trial, but if the previous

trial was a rare transition, then they will switch to the other stage 1 action in the next trial

to reach the state in which they earned a reward. As such, the operation of model-based RL

predicts an interaction between earning a reward in the previous trial and the transition type

of the previous trial (Figure 5.2d).

The other side of the spectrum is a pure hierarchical model-based RL in which, at stage 1,

model-based RL chooses between performing a sequence of actions: LL, LR, RL, RR. In this

condition, if the performance of an action was rewarded in the previous trial (e.g., performance

of the RR action sequence), then the subject takes the same action sequence in the next trial

(RR), which predicts that the subject will also stay on the same stage 1 action in the next

trial irrespective of the transition type of the previous trial. As such, involvement of pure

hierarchical model-based RL predicts a main effect of reward (Figure 5.2e). Given these two

extremes, a HMB RL, which chooses between all the actions and action sequences (i.e., L, R,

LL, LR, RL, RR), predicts a main effect reward as well as an interaction between reward and

transition.

In addition to the above pattern at stage 1, the HMB RL makes another prediction regarding the

pattern of choices at stage 2 (Dezfouli & Balleine, 2013). Imagine that a subject has performed

a LR action sequence and has received a reward. This means that after performing action ‘L’ at

stage 1, the subject has transitioned to state S2, in which it has taken action ‘R’. Hierarchical

model-based RL predicts that, in the next trial, the subject will take the same action sequence

LR, implying that it will take action ‘L’ at stage 1, and ‘R’ at stage 2, irrespective of which stage

2 state subjects end up in after taking action ‘L’. This predicts that, even if after taking action

‘L’, the subject transitions to state S1 (by a rare transition) in which action ‘L’ should be taken,
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the subject still has a tendency to take action ‘R’ to complete the action sequence. Thus, the

prediction will be: whenever a trial is rewarded, if the subject stays on the same stage 1 action,

it is probably repeating the previously rewarded action sequence and thus will repeat the same

stage 2 action even if that is a different stage 2 state from the previous trial (Figure 5.2f). This

pattern, predicts, therefore, an interaction between staying on the same stage 1 action, and

whether a reward was earned. In the following, we present analyses of stage 1 and stage 2

choices in each experiment (Dezfouli & Balleine, 2013). Note that for the stage 2 results, only

trials in which the stage 2 state differed from the previous trial are included for the analysis.

Similar to the previous phase, only trials in which subjects made a correct discrimination in

the previous trial are included in the subsequent analysis.

5.3.4 Experiment 1

Eight subjects were trained in a two-stage decision-making task that only included common

transitions (Figure 5.2b, Figure 5.4b). This experiment involved eight probe sessions (Fig-

ure 5.2c), and in each test session the probability of rare transitions was 80%, except for the

last session in which the probability of common and rare transitions was equal (%50) for

the reasons that we will explain below. For each session, we analyzed the pattern of choices

at stage 1 and stage 2 of the task, which are depicted in Figure 5.4d-h, and their statistical

analyses are presented in Table 5.1.

At the beginning of training, in session s40, there is a significant interaction between reward

and transition type (β=-0.28 (CI: -0.50, -0.05), SE=0.11, p=0.013), however with a negative

coefficient, which seems to indicate that subjects are staying away from reward in a goal-

directed manner (Figure 5.4d). However, it is straightforward to see that such a pattern

emerges when subjects treat the task as a single stage decision process and so tend to repeat

the most recently rewarded action. In contrast to this pattern, at the end of the training in

session s87 (Figure 5.4g), there is a significant interaction between reward and transition, with

a positive coefficient (β=0.62 (CI: 0.26, 0.98), SE=0.18, p=6e-4), which indicates that (1) subjects

have learned the two-stage logic of the task, (2) they have learned the contingency between
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Table 5.1 – Results of logistic regression analysis of stage 1, and stage 2 choices of Experiment
1. For the stage 1 choices, the analysis is focused on staying on the same stage 1 action in the
next trial based on whether the previous trial was rewarded (rew) and whether the previous
trial was common or rare (trans). ‘re:tr’ is the interaction between reward, and transition type,
and ‘inter’ refers to the intercept term. For stage 2 choices, the analysis focuses on staying on
the same stage 2 actions, based on staying on the same stage 1 action (stay), and earning a
reward in the previous trial (rew). ‘re:st’ is the interaction between ‘reward’, and ‘stay’. ‘p’ refers
to p-value.

Stage 1 actions
session s32 s40 s49 s57 s66 s78 s87 s94 s94:1 s94:2 s94:3

p 0.773 0.312 0.017 0.299 0.177 0.162 0.885 0.428 0.460 0.131 0.194
SE 0.15 0.11 0.16 0.12 0.13 0.11 0.22 0.12 0.24 0.26 0.29inter
β 0.04 0.11 0.38 0.12 0.18 0.15 -0.03 0.10 0.18 -0.39 0.37
p 0.938 0.085 0.090 0.067 0.021 0.001 0.904 <0.001 0.356 0.003 0.007

SE 0.13 0.11 0.13 0.14 0.11 0.12 0.20 0.12 0.20 0.29 0.23rew
β -0.01 0.20 0.22 0.26 0.27 0.39 0.02 0.46 0.19 0.85 0.62
p 0.764 0.628 0.098 0.016 0.825 0.383 0.993 0.498 0.407 0.644 0.335

SE 0.14 0.10 0.19 0.11 0.12 0.13 0.24 0.14 0.18 0.29 0.18trans
β 0.04 -0.05 -0.31 -0.28 -0.02 -0.11 0.00 0.09 0.15 -0.13 0.17
p 0.882 0.013 0.362 0.397 0.485 0.417 6.00e-04 <0.001 0.011 0.003 0.668

SE 0.12 0.11 0.14 0.12 0.10 0.09 0.18 0.11 0.18 0.29 0.21re:tr
β 0.01 -0.28 -0.12 0.10 -0.07 0.08 0.62 0.40 0.45 0.85 0.09

Stage 2 actions
session s32 s40 s49 s57 s66 s78 s87 s94 s94:1 s94:2 s94:3

p <1e-7 <1e-12 <1e-11 0.957 <1e-8 <1e-14 <1e-9 <1e-16 0.981 <1e-4 0.999
SE 0.44 0.41 0.43 169.6 0.47 0.35 0.45 0.29 329 0.57 >100inter
β -2.44 -2.93 -2.99 -9.07 -2.84 -2.82 -2.96 -2.67 -7.86 -2.47 -17.63
p 0.933 0.938 0.148 0.981 0.383 0.137 0.169 0.010 0.987 0.924 1

SE 0.32 0.37 0.45 169.6 0.43 0.32 0.45 0.26 329 0.51 >100rew
β 0.02 0.02 0.66 3.95 0.37 0.48 0.63 0.62 5.33 0.04 5.82
p 0.057 0.852 0.074 0.969 0.401 0.386 0.891 0.79 0.987 0.387 1

SE 0.40 0.52 0.48 169.6 0.40 0.33 0.46 0.27 329 0.50 >100stay
β 0.77 -0.09 0.86 -6.56 0.33 0.29 0.06 0.07 -5.21 0.43 2.95
p 0.105 0.515 0.957 0.979 0.089 0.200 0.443 0.85 0.990 0.809 1

SE 0.32 0.35 0.45 169.6 0.39 0.37 0.49 0.28 329 0.50 >100re:st
β 0.51 0.23 -0.02 4.38 0.67 0.47 0.37 -0.05 4.29 -0.12 5.88
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stage 1 actions and stage 2 states. In between these two sessions, there are two sessions (s66

and s78) in which subjects treat the task as a two-stage task, but actions are not yet guided by

the contingency between stage 1 actions and stage 2 states (Figure 5.4e,f). This is indicated by

the significant main effect of reward in these two sessions (Table 5.1/stage1/s66 and s78).

Such a pattern of responses in sessions s66, and s78 can be a product of hierarchical decision-

making. However, the hierarchical account, as mentioned earlier, predicts an interaction

between stay and reward at stage 2 choices, which is not observed in this dataset (Figure 5.4i;

Table 5.1/stage2/s66, s78), which could reflect inhibition of the performance of action se-

quences (we will elaborate this effect in the next experiments). Equally likely, this pattern of

choices could be the result of model-free RL, which predicts staying on the stage 1 choice after

earning reward (a main effect of reward at stage 1) without necessarily staying on the stage 2

choice. In any case, these two sessions seem to be intermediary stages in the development of

model-based actions, rather than a signature of other RL systems. Following this logic, one

can assume that, because the model-based RL is uncertain about the contingencies at this

stage, it updates them with each experience, i.e., with each rare transition, the contingencies

of stage 1 actions will be updated as if they lead to their rare outcomes, which predicts a main

effect of reward at stage 1 and the absence of a reward x transition interaction.

For further investigation of the above issue, at the end of the training sessions we performed

a probe session (s94) in which each stage 1 action led to each stage 2 action with equal

probability. The rationale for this manipulation was to make the contingencies ambiguous

for the subject and so render actions sensitive to their final outcomes. Figure 5.4h shows

the result of this session, and Figure 5.4j-l shows the result of the break down of the trials

to early, mid, and late trials (there were 48 outcomes in total). Over the whole session, the

effects of reward and also the interaction between reward and transition type were significant

(Table 5.1/stage1/s94). However, consistent with our expectation, early in training the behavior

was only model-based (Table 5.1/stage1/s94:1), whereas in the middle of the session there

was also an effect of reward (Table 5.1/stage1/s94:2), which is indicated by a reward by session

period interaction (period 1: number of outcomes < 16, period 2: 32 >number of outcomes
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Figure 5.4 – Experiment 1. (a) Results of the discrimination training showing the percentage
of the correct responses averaged over subjects. (b) Odds ratio of the probability of staying
on the same stage 1 action after getting rewarded on the previous trial. Odds ratio=1 implies
an equal preference for both actions. Sessions marked with ‘*’ are the probe sessions which
included both rare and common transitions. (c) The probability of entering the magazine as a
function of staying (stay) or switching (switch) to the other stage 1 action, and whether the
previous trial was rewarded (averaged over subjects and the first five sessions of the training; 8
* 5 data points contributed to each mean). (d-h, j-l) The probability of staying on the same
stage 1 action, averaged over subjects, as a function of whether the previous trial was rewarded
(reward/no reward), and whether the transition in the previous trial was common or rare.
(i) Stage 2 choices in session s78. The graph shows the probability of staying on the same
stage 2 action averaged over subjects, as a function of whether the previous trial was rewarded
(reward/no reward), and whether subjects stayed on the same stage 1 action (stay/switch).
Only trials in which the stage 2 state is different from the previous trial are included. Error-bars
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>=16) (β=0.35 (CI: 0.29, 1.19), SE=0.16, p=0.030). Late in the session the model-based effect was

removed from choices (Table 5.1/stage1/s94:3), which is indicated by a reward by transition

by session period interaction (period 1: 32 >number of outcomes >=16, period 2: number of

outcomes >=32) (β=-0.38 (CI: -0.74, -0.03), SE=0.18, p=0.033).

The results of this experiment revealed the development of model-based action, and how they

are affected by manipulating contingencies in the environment. However, we were not able to

see evidence for the engagement of HMB RL, in contrast to a previous study using a similar

task in humans (Dezfouli & Balleine, 2013). As discussed earlier, in order for the hierarchical

decision-making to emerge, animals need to consider the performance of action sequences

LL, LR, RL, RR at stage 1. This requires that these action sequences be already formed by

the concatenation of single actions, which takes place when the consecutive performance

of single actions gets rewarded. However, the training conditions of this experiment only

included common transitions, which means that only the performance of the sequences L->R,

and R->L will be rewarded, whereas and the performance of the sequence L->L and R->R is

never rewarded. As such, in order to promote the formation of these action sequences, in

the next set of experiments the subjects were explicitly trained on a condition in which the

performance of the LL and RR sequences earned reward.

5.3.5 Experiment 2

Eight subjects were trained in a two-stage decision-making task that only included common

transitions (Figure 5.2b, Figure 5.5b). In the middle of these training sessions, animals were

trained in a condition that only included rare transitions1 (sessions s62 to s64; Figure 5.5b),

which means that animals needed to perform the LL and RR sequences in order to earn a

reward. At the end of the training sessions, the animals were given a probe session which

included both common and rare transitions (80% common transitions).

1Note that in these sessions the definition of the rare transitions is similar to the previous sessions (i.e., action
‘L’ leading to state S1 and action ‘R’ leading to state S2), even though in these sessions rare transitions are more
common.
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Table 5.2 – Results of logistic regression analysis of stage 1, and stage 2 choices in Experiments
2-4. For the stage 1 choices, the analysis is focused on staying on the same stage 1 action in the
next trial, based on whether the previous trial was rewarded (rew), and whether the previous
trial was common or rare (trans). ‘re:tr’ is the interaction between reward, and transition type,
and ‘inter’ refers to the intercept term. For stage 2 choices, the analysis is focused on staying
on the same stage 2 actions, based on staying on the same stage 1 action (stay) and earning a
reward in the previous trial (rew). ‘re:st’ is the interaction between ‘reward’, and ‘stay’. ‘p’ refers
to p-value. ‘Expr’ stands for ‘Experiment’.

Stage 1 actions
Expr2 Expr3 Expr4

session s76 s74 s57 s58 s70
p <1e-8 0.84 0.149 0.019 0.375

SE 0.13 0.12 0.14 0.20 0.18inter
β 0.78 -0.02 0.21 0.47 -0.16
p <0.001 <1e-8 0.565 0.020 0.003

SE 0.13 0.08 0.18 0.13 0.20rew
β 0.45 0.49 0.10 0.32 0.59
p 0.467 0.78 0.299 0.616 0.111

SE 0.15 0.14 0.26 0.28 0.25trans
β -0.11 -0.04 0.27 -0.14 0.39
p 0.190 0.56 0.174 0.432 <1e-4

SE 0.14 0.08 0.36 0.16 0.21re:tr
β 0.18 0.05 0.49 0.12 0.92

Stage 2 actions
Expr2 Expr3 Expr4

session s76 s74 s57 s58 s70
p <1e-13 <1e-15 0.456 0.830 <0.001

SE 0.35 0.09 0.24 0.36 0.28inter
β -2.61 -0.86 -0.18 -0.07 0.96
p 0.145 0.001 0.004 <0.001 <0.001

SE 0.38 0.09 0.15 0.26 0.22rew
β 0.56 0.28 0.42 0.98 0.85
p 0.887 0.02 0.072 0.155 0.017

SE 0.33 0.09 0.14 0.19 0.24stay
β -0.04 0.20 0.25 0.27 0.58
p 0.600 0.24 0.007 0.513 0.011

SE 0.34 0.08 0.16 0.17 0.20re:st
β 0.18 0.09 0.43 0.11 0.52
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Stage 1 choices are depicted in Figure 5.5d, and the results of the logistic regression analysis are

presented in Table 5.2/stage1/expr2/s76, which indicates only the main effect of reward. This

pattern of choices at stage 1 is consistent with the engagement of pure hierarchical decision-

making. However, this account also predicts an interaction between staying on stage 1 actions,

and receiving a reward in the previous trial. The results of this stage 2 action are depicted in

Figure 5.5e, in which the mentioned interaction is not significant (Table 5.2/stage2/expr2/s76).

For a closer inspection of this effect, we broke down the trials into two kinds: (1) trials in

which animals earned a reward from a common transition in the previous trial (i.e., they have

performed a LR or RL action sequences), and therefore repeating that sequence in the next

trial involved moving from one side of the box to the other, (2) trials in which animals earned a

reward from a rare transition in the previous trial (i.e., they have performed a LL or RR action

sequence in the previous trial) and, therefore, repeating that sequence involved pressing the

same lever twice, without a need to move to the other side of the box. One can assume that,

because repeating the action sequence in the first kind of trial takes longer, subjects are more

likely to be able to inhibit an inappropriate ongoing action sequence, whereas in the later case,

performance of the action sequence is faster, and is more likely to be executed. Figure 5.5f

shows the probability of staying on the same stage 2 action, depending on whether the action

sequence to be executed required switching to the other side of the training box or not. As the

figure shows, when the previous trial was rewarded, and subjects stayed on the same stage 1

action, then in the second kind of trials, subjects were less able to inhibit the ongoing action

sequence. This is indicated by a result of logistic regression on the probability of staying on the

same stage 2 action as a function of whether the sequence performance required switching

to the other side of the training box (β=-1.06 (CI: -1.87,-0.24), SE=0.41, p=0.010). Note in

Figure 5.5f, some of the conditions occur only when there are two consecutive rare transitions

(since only trials in which the stage 2 state is different from the previous trial are included in

the analysis), which are sparse. As such, in the next experiment, in addition to other changes,

we gave a test in which the probability of common and rare transitions was equal (50%).
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Figure 5.5 – Experiment 2. (a) Results of the discrimination training, showing the percentage
of the correct responses. (b) Odds ratio of the probability of staying on the same stage 1 action
after getting rewarded in the previous trial. (c) The probability of entering the magazine as a
function of staying (stay) or switching (switch) to the other stage 1 action, and whether the
previous trial was rewarded (first five sessions of the training; 8 * 5 data points contributed
to each mean). (d) The probability of staying on the same stage 1 action (session s76) as a
function of whether the previous trial was rewarded (reward/no reward) and whether the
transition in the previous trial was common or rare. (e) The probability of staying on the
same stage 2 action (session s76), as a function of whether the previous trial was rewarded
(reward/no reward) and whether subjects stayed on the same stage 1 action (stay/switch). (f)
The probability of staying on the same stage 2 action as a function of whether the previous
trial was rewarded (reward/ no reward), whether the same stage 1 action was taken in the
current trial, (same/switch), and whether the performance of the action sequence required
switching to the other side of the box or not (same side/different sides). Only trials in which
the stage 2 state was different from the previous trial are included in panels e,f. Error-bars
1SEM.
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Figure 5.6 – Experiment 3. (a) Results of the discrimination training, showing the percentage
of the correct responses. (b) Odds ratio of the probability of staying on the same stage 1 action
after getting rewarded in the previous trial. (c) The probability of entering the magazine as a
function of staying (stay) or switching (switch) to the other stage 1 action, and whether the
previous trial was rewarded (first five sessions of the training; 8 * 5 data points contributed to
each bar). (d) The probability of staying on the same stage 1 action (session s74) as a function
of whether the previous trial was rewarded (reward/no reward), and whether the transition in
the previous trial was common or rare. (e) The probability of staying on the same stage 2 action
(session s74), as a function of whether the previous trial was rewarded (reward/no reward), and
whether subjects stayed on the same stage 1 action (stay/switch). (f) The probability of staying
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box or not (same side/different sides). Only trials in which the stage 2 state was different from
the previous trial are included in panels e,f. Error-bars 1SEM.
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5.3.6 Experiment 3

The results of the previous experiment indicated that the lack of evidence for the engagement

of hierarchal RL at stage 2 choices was likely because the performance of the action sequences

that require pressing levers on both sides of the box is prone to high inhibition. Switching

from one side of the box to the other side of the box in some trials was intervened by a

magazine response (animals check the magazine before executing the second component

of the sequence) which can potentially make such action sequences prone to interruption

and inhibition. Based on this, in Experiment 3, if a subject made a magazine entry response

after a stage 1 action and before the stage 2 action, then the trial aborted (strict sequences in

Figure 5.6b).

Eight subjects were trained in a two-stage decision-making task that only included common

transitions (Figure 5.2b, Figure 5.6b). The result of the stage 1 choices is depicted in Figure 5.6d,

and the statistical analyses are presented in Table 5.2/stage1/expr3/s74, which indicates the

main effect of reward, which potentially indicates that rats were using hierarchical RL. The

results of the stage 2 choices are presented in Figure 5.6e, and the statistical analyses are

presented in Table 5.2/stage2/expr3/s74. Similar to Experiment 2, choices at stage 2 did not

indicate the operation of hierarchical decision-making; however, when animals were rewarded

and stayed on the same stage 1 action, then they seemed to be able to inhibit the action

sequences more if the sequence performance did not require switching to the other side of

the box (Figure 5.6f), as suggested by the result of a logistic regression assessing the effect of

switching sides on staying on the same stage 2 action (β=-1.4 (CI:-1.79,-.92), SE=0.26, p<1e-7).

5.3.7 Experiment 4

The result of Experiment 2 and 3 suggested increased inhibition of action sequences by the

stage 2 stimulus when subjects needed to switch from one side of the box to the other side.

This effect should be predicted to diminish if less salient stimuli were used to signal stage 2

states. Based on this, in this experiment instead of the clicker and tone signaling the stage 2
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states, we used a constant and a blinking house light to signal the stage 2 states. We trained

eight subjects in these conditions and, as expected, it took longer for the subjects to learn to

discriminate between these two stimuli, compared to the tone and clicker (Figure 5.7a vs e.g.,

Figure 5.6a), which is indicated by the result of a logistic regression that showed a significant

effect of experiment (Experiment 4 vs Experiment 3) on correct discrimination in the first 10

sessions (β=1.39 (CI: 0.60, 2.18), SE=0.40, p=5e-4).

After training (Figure 5.7b), animals were given three probe sessions (s57, s58, s70). Ta-

ble 5.2/stage1/expr4/s57,s58,s70 presents the statistical analysis of the sessions. In session

s57, animals did not show any sign of model-based or hierarchical decision-making at stage

1 (main effect of reward p>0.565; reward-transition interaction p>0.174), and there was no

indication of discrimination between the states at stage 2 choices (Table 5.2/stage2/expr4/s57,

s58:intercept, p>0.25). As such, animals were given another test (s58), which indicated a main

effect of reward (Table 5.2/stage1/expr4/s58), however, at stage 2, subjects did not show any

discrimination between stage 2 states (Table 5.2/stage2/expr4/s58:intercept; p>0.25). As such,

subjects were given nine more training sessions (s59 to s69), and then they were given a further

probe test (s70).

The results of stage 1 actions are presented in Figure 5.7d, and statistical analysis of stage 1

choices are presented in Table 5.2/stage1/expr4/s70. As the table shows, there was a significant

reward-transition interaction (p<1e-4), which indicates the engagement of the model-based

controller. In addition to that, the main effect of reward was also significant, which potentially

indicates the engagement of HMB RL. Figure 5.7e presents choices at stage 2, which were

consistent with the predictions of HMB RL about stage 2 choices, i.e., subjects tended to take

the same stage 2 action when the previous trial was rewarded and they stayed on the same

stage 1 actions. This is indicated by a significant interaction between staying on the same

stage 1 action and reward in the previous trial (β=0.52 (CI: 0.11, 0.92), SE=0.20, p=0.011).

Comparison of RL models. The above behavioral analysis suggests that HMB RL guides choices.

However, the analysis only reveals the effect of feedback from one-trial-back on current
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Figure 5.7 – Experiment 4. (a) Results of the discrimination training, showing the percentage
of the correct responses. (b) Odds ratio of the probability of staying on the same stage 1 action
after getting rewarded in the previous trial. (c) The probability of entering the magazine as a
function of staying (stay) or switching (switch) to the other stage 1 action, and whether the
previous trial was rewarded (first five sessions of the training; 8 * 5 data points contributed to
each bar). (d) The probability of staying on the same stage 1 action (session s70) as a function
of whether the previous trial was rewarded (reward/no reward) and whether the transition
in the previous trial was common or rare. (e) The probability of staying on the same stage
2 action (session s70), as a function of whether the previous trial was rewarded (reward/no
reward) and whether subjects stayed on the same stage 1 action (stay/switch). (f) Simulation
of stage 1 choices, and (g) stage 2 choices using the best fitted parameters for each subject.
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choices, whereas choices are presumably guided by the history of prior feedback, and not

only the feedback received on the previous trial. As such, in order to analyze the full profile

of choices, we compared different variants of the RL algorithms using a Bayesian modeling

comparison procedure with the aim of confirming that subjects are using HMB RL as opposed

to other non-hierarchical alternatives. Based on previous studies using similar decision-

making tasks in humans (Daw et al., 2011; Dezfouli & Balleine, 2013; Gläscher, Daw, Dayan, &

O’Doherty, 2010), we compared four families of RL algorithms: (1) a non-hierarchical model-

based RL family, (2) a model-free RL family, (3) a hybrid model-free, model-based RL family,

and (4) a hierarchical model-based RL family. In total we considered 328 different models,

where each family consisted of several members with different degrees of freedom (please

see section 5.5 for details of each model). We then calculated the log-model evidence for

each model given the choices of subjects. The results indicated that the differences in model

evidence (Bayes factor) between the best fitting model of the HMB RL family, and the non-

hierarchical model-based RL (family 1)/model-free RL (family 2)/ model-free, model-based

hybrid RL (family 3), were 50, 47, and 51 respectively. In Bayesian model comparison literature,

Bayes factors greater than 10 are considered to be strong evidence (Jeffreys, 1961), and thus

the above results of model comparison reveal that subjects were very likely utilizing HMB RL

action selection.

We then simulated the HMB RL model in the task conditions with the best fitting parameters

(please see section 5.5 for how parameters were obtained) and analyzed stage 1 and stage 2

choices. Analysis of stage 1 choices (Figure 5.7f) revealed a significant main effect of reward

(β=0.25 (CI: 0.19, 0.32), SE=0.03, p<0.001), and a significant interaction between whether the

previous trial was rewarded, and the transition type of the previous trial (β=0.29 (CI: 0.19, 0.38),

SE=0.04, p<0.001). Analysis of stage 2 choices (Figure 5.7g), revealed a significant interaction

between staying on the same stage 1 action and earning a reward on the previous trial (β=0.52

(CI: 0.33, 0.70), SE=0.09, p<0.001), which is consistent with predictions from HMB RL regarding

stage 2 choices.
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5.4 Discussion

Model-based reinforcement learning provides a computational framework for studying goal-

directed actions. This notion, however, assumes that the states and available actions are

given to an agent a priori, whereas the ability to (i) create new states to be able to correctly

represent task space, and (ii) create complex actions out of simpler actions to make hierar-

chical decisions, is also an integral part of goal-directed decision-making. Using a sequential

decision-making task in rats, we firstly provided behavioral evidence that, at the beginning

of training, animals make decisions based on a simple representation of the environment,

but with sufficient training, they learn the sequential nature of the task and build the correct

state-space representation of the environment as required for the operation of model-based

RL. Secondly, within this multi-stage representation, we show that animals chunk actions

together and create action sequences that are then integrated into model-based RL, revealing

a hierarchical organization of decision-making processes.

The results of the experiments showed that the operation of HMB RL requires certain experi-

mental conditions, such as pre-training on action sequences and low intrusion of other factors

on the performance of action sequences. Without these conditions, choices at stage 1 are

consistent with the operation of HMB RL, but not choices at stage 2. This would have been due

to inhibition of action sequences. Alternatively this pattern of choices could also indicate the

operation of another RL system, such as model-free RL, instead of HMB RL with interrupted

sequences. Within this alternative framework, choices are a mixture of goal-directed actions

(model-based), and model-free actions that are guided by their ‘cached’ (as opposed to their

current values) (Daw et al., 2005). Our results are ambivalent with respect to this interpretation,

but since, in other conditions, there is positive evidence for HMB RL, it seems to be more

parsimonious to interpret this result in terms of the inhibition of action sequences, rather

than being the output of a model-free system.

Besides theoretical considerations regarding the hierarchical component of the task, the cur-

rent decision-making task provides a behavioral protocol for investigating the acquisition
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of the correct state-space in a multi-stage decision- making task, which can be used to un-

cover the neural substrates of this process. Furthermore, using a computational modeling

procedure, the task provides a quantitative measure of the inhibition of action sequences by

other monitoring processes, which again can be used to uncover the neural substrates of this

process.

5.5 Appendix: computational modeling

As we mentioned in the article, we compared four different families of the RL algorithms: (1) a

non-hierarchical model-based RL family, (2) a model-free RL family, (3) a hybrid model-free,

model-based RL family, and (4) a hierarchical model-based RL family. Each family had several

instances, that we described them below.

5.5.1 Simulation environment

We assumed that the environment has five states; the initial state denoted by S0, stage 2 states

denoted by S1 and S2, the reward state denoted by SRe and no-reward state denoted by SN R .

For the case of non-hierarchical models, we assumed that actions L and R are available in

states S0, S1 and S2, and for the case of hierarchical models, we assumed actions L, R, LR, LL,

RL, and RR are available in stats S0, and actions L and R, are available in states S1 and S2.

5.5.2 Model-based RL (MB)

The model-based system works by learning the model of the environment, and then calculating

the value of actions using the learned model. The model of the environment is composed

of the transition function (T (.)), and the reward function (R(.)). We denote the transition

function with T (s′|a, s) which is the probability of reaching state s′ after executing action a

in state s. We assume that the transition function at the first stage is fixed (T (S1|R,S0) = 0.8

and T (S2|L,S0) = 0.8) and it will not change during learning. For other states, after executing
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action a in state s and reaching state s′, the transition function updates as follows:

∀s′′ ∈ {SRe ,SN R } : T (s′′|s, a) =

 (1−η)T (s′′|s, a)+η : s′ = s′′

(1−η)T (s′′|s, a) : s′ 6= s′′
(5.1)

Where η(0 < η < 1) is the update rate of the state-action-state transitions. For the reward

functions, we assumed that the reward at state SRe is one (R(SRe ) = 1), and zero in all other

states.

Based on the above reward and transition functions, the goal-directed value of taking action a

in state s is as follows:

∀s ∈ {S0,S1,S2} : V G (s, a) =∑
s′

T (s′|s, a)V G (s′) (5.2)

Where:

V G (s) =

 maxa V G (s, a) : s ∈ {S0,S1,S2}

R(s) : s ∈ {SRe ,SN R }
(5.3)

Finally, the agent uses the calculated values to choose actions. The probability of selecting

action a in state s, denoted by π(s, a), will be determined according to the soft-max rule:

π(s, a) = eβ(s)V G (s,a)+κ(s,a)+d(s,a)∑
a′ eβ(s)V G (s,a′)+κ(s,a′)+d(s,a′)

(5.4)

The above equation reflects the fact that actions with higher values are more likely to be

selected. The β(s) parameter controls the rate of exploration; the parameter κ(s, a) is the

action preservation parameter and captures the general tendency of taking the same action as

the previous trial (Ito & Doya, 2009; Lau & Glimcher, 2005). Finally, the term d(s, a) represents

the tendency of the subjects to take the discriminative actions at the stage 2 states (taking

action R in S2 and action L in S1). A positive value for this parameter entails that a subject has

a tendency to take the discriminative action at stage 2 states. Please note that the effect of this
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parameter is on top of the effect of values at stage 2 states.

For the exploration parameter, we assume that β(s) =β1 if s = S0 and β(s) =β2 if s ∈ {S1,S2}.

For the perseveration parameter we assumed that if s = S0 and a being the action taken in

the previous trial in the S0 state, then κ(s, a) = k, otherwise it will be zero. Finally, for the

discrimination parameter, we assume d(s, a) = φ if (s, a) ∈ {(S1,L), (S2,R)}, and d(s, a) = 0

otherwise.

In the most general form, all the parameters (β1,β2,η,k,φ) were treated as free parameters. We

also generated eight variants by (1) setting β1 =β2 (i.e., rate of exploration at stage 1 and stage

2 states are the same), (2) setting k = 0 (there is no tendency to perseverate on the previously

taken actions), and (3) setting φ= 0 (there is not tendency to take the discriminative action at

stage 2).

5.5.3 Model-free RL (MF)

Here we used Q-learning (Watkins, 1989) for model-free learning. After taking action a in state

s, and reaching state s′, model-free values update as follows:

Q H (s, a) ←Q H (s, a)+α(V H (s′)−Q H (s, a)) (5.5)

Where α(0 <α< 1) is the learning rate, which can be different in stage 1 and stage 2 actions.

For the first stage actions (actions executed in S0), α=α1, and for the second stage actions

α=α2. In equation 5.5, V H (s) is the value of the best action in state s:

V H (s) =

 maxa Q H (s, a) : s ∈ {S0,S1,S2}

R(s) : s ∈ {SRe ,SN R }
(5.6)

In the trials in which the best action is executed in s ∈ {S1,S2} the value of the action executed

in state S0 also updates according to the outcome. If a was to be the action which was taken in
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S0, a′ the action taken in s, and s′ the state visited after executing a′, values update as follows:

Q H (S0, a) ←Q H (S0, a)+α1λ(V H (s′)−Q H (s, a′)) (5.7)

Where λ(0 < λ< 1) is the reinforcement eligibility parameter, and determines how the first

stage action values are affected by receiving the outcome after executing the second stage

actions. The action selection method, and variants of this form of learning are described in

the next section.

5.5.4 Model-free, model-based hybrid RL (MF-MB)

This model is a combination of model-free RL, and model-based RL, in which final values are

computed by combining the values provided by model-free and model-based processes:

V (s, a) = wV G (s, a)+ (1−w)Q H (s, a) (5.8)

Were w(0 < w < 1) determines the relative contribution of model-free and model-based values

into the final values.

The probability of selecting action a in state s will be determined according to the soft-max

rule:

π(s, a) = eβ(s)V (s,a)+κ(s,a)+d(s,a)∑
a′ eβ(s)V (s,a′)+κ(s,a′)+d(s,a′) (5.9)

Were parameters are same as the ones we described in the ‘Model-based (MB)’ section.

In the most general form, all the free parameters are included in the model: β1, β2, η, α1,

λ, w , k, φ (we assumed that α2 = η). We generated 32 simpler models by setting (1) λ = 0,

(2) α1 =α2 (learning rate of model-free system is the same at stage 1 and stage 2 states), (3)

β1 = β2 (rate of exploration is the same at stage 1 and stage 2 states), (4) k = 0 (there is no

tendency to perseverate on the previously taken actions), and (5) φ= 0 (there is not tendency
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to take the discriminative action at stage 2).

By setting w = 0 the above hybrid model degenerated to a model-free system described in

the previous section, and therefore, we generated 32 variants of model-free RL (similar to the

hybrid model), system by setting w = 0.

5.5.5 Hierarchical model-based RL (HMB)

Implementation of the hierarchical structure is similar to hierarchical RL, with action se-

quences (LL, LR , etc) as options (section 2.4.5). We assumed actions L, R , LL, LR , RL, and RR

are available in stats S0, and actions L and R , are available in states S1 and S2. After reaching a

terminal state (SRe or SN R ), transition functions of both the action sequence, and the single

action that led to that state update according to equation 5.1. In the case of single actions,

the transition function will be updated by the η = η1 update rate, and in the case of action

sequences, the transition function will be updated by the η= η2 update rate. Based on the

learned transition function, value of action a in state s is calculated by the goal-directed

system using equation 5.2.

After calculating values of actions (V G (s, a)) using equation 5.2, the probability of selecting

each action will be as follows:

π(s, a) = eβ(s)V G (s,a)+κ(s,a)+d(s,a)∑
a′ eβ(s)V G (s,a′)+κ(s,a′)+d(s,a′)

(5.10)

β(s, a) is the rate of exploration. The rate of exploration for stage 2 states (s ∈ {S1,S2}) is

β(s, a) = β2. For stage 1 actions (s = S0), if a is a single action, we assume β(s, a) = β1, and

if a is an action sequence β(s, a) = β3. As before, κ(s, a) captures action perseveration. We

assumed that κ(s, a) = k1 if action a is a single action, and κ(s, a) = k2 if action a is an action

sequence. Parameter d(s, a) is similar to the previous sections.

For calculating the probability of selecting actions in the second stage, given the first choice

of the subject, we need to know whether that action is a part of an action sequence selected
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earlier, or is it under goal-directed control. Assume we know action L has been executed in

state S0 by the subject; then, the probability of this action being due to performing the LR

action sequence is:

p(LR|S0,L) = π(LR|S0)

π(L|S0)+π(LR|S0)+π(LL|S0)
(5.11)

Similarly, the probability of observing L due to selecting the single action L is:

p(L|S0,L) = π(L|S0)

π(L|S0)+π(LR|S0)+π(LL|S0)
(5.12)

Based on this, the probability that the model assigns to action a in state s ∈ {S1,S2}, given that

action a′ is being observed in S0 is:

p(a|s) = p(a′|S0, a′)π(a|s)+p(a′a|S0, a′) (5.13)

Where p(aa′|S0, a′) and p(a′|S0, a′) are calculated using equations 5.11 and 5.12 respectively.

Next, we assumed that even under the conditions in which an action sequence is being

executed, there is a chance that the performance of the action sequence will be interrupted.

Let’s assume that the probability of interrupting an action sequence is I , then equation 5.13,

will become as follows:

p(a|s) =π(a|s)
(
p(a′|S0, a′)(1− I )+ I

)+ (1− I )p(a′a|S0, a′) (5.14)

The above equation, in the case of I = 0, i.e., action sequences never become interrupted, will

degenerate to equation 5.13. In the case of I = 1, i.e., all the action sequences are interrupted

and they have no effect on stage 2 choices, and we have:

p(a|s) =π(a|s) (5.15)

Which indicates probability of taking each action at stage 2 is guided only by the rewards
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earned on that stage 2, and not by the action sequences in the first stage.

In the most general form, all the free parameters are included in the model: β1, β2, β3, η1, η2,

k1, k2, φ,I . We generated 256 simpler models by setting (1) β1 =β2 (exploration rates at stage

1 and stage 2 choices are the same), (2) β1 =β3 (exploration rates for action sequences and

single actions are the same), (3) η1 = η3 (learning rates for action sequences and single actions

are the same), (4) k1 = 0 (no perseveration for single actions), (5) k2 = 0 (no perseveration for

action sequences), (6) φ = 0 (no tendency to take discriminative actions), (7) I = 1 (action

sequences are always interrupted), (8) I = 0 (action sequences are never interrupted).

5.5.6 Model comparison

We took a hierarchical Bayesian approach to compare different models. This approach pro-

vides a framework to compare models based on their complexity, and their fit to data. Bayesian

model comparison is based on the model evidence quantity, which is the probability of the

data given a model. The approach that we took to calculate this quantity is similar to the

approach taken in (Piray et al., 2014), which is based on (Huys et al., 2011).

For each model, there are two sets of free parameters: group-level parameters denoted byΘ

(we call these parameters hyper-parameters), and subject-level parameters denoted with θi

for subject i . The hyper-parameters define the prior distribution over subject-level parameters.

The aim is to calculate the probability of data (denoted by D) given model M :

P (D|M) =
∫
Θ

P (D|M ,Θ)P (Θ)dΘ (5.16)

Since the above integral is intractable, we approximate it using Bayesian Information Criterion

(BIC) (Schwarz, 1978):

logP (D|M) ≈∑
i

logP (Di |M ,ΘML)− 1

2
|Θ| log |D| (5.17)

Where ΘML is the maximum-likelihood estimate of Θ, and Di is the data of subject i . |Θ| is
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the number of hyper-parameters, and |D| is the sum of number of choices made by all the

subjects. In the above formula, the term inside the sum is:

P (Di |M ,ΘML) =
∫
θi

P (Di |M ,θi )P (θi |ΘML)dθi (5.18)

Which is again intractable to compute, and we use Laplace method (MacKay, 2003) to approxi-

mate it:

logP (Di |M ,ΘML) ≈ logP (Di |M ,θM AP
i )+logP (θM AP

i |ΘML)+ 1

2
|θi | log2π− 1

2
log |Hi | (5.19)

Where θM AP
i is the maximum a posterior (MAP) estimate of θi . |θi | is the number of free

parameters for model M , and |Hi | is determinant of the Hessian matrix at θM AP
i .

Thus in summary, we calculated the model evidence for each subject using equation 5.19, and

then we summed over all the model evidence for all the subjects to calculate equation 5.17,

which is the model evidence over the whole group.

The only remaining question is how to calculateΘML , which is:

ΘML = argmax
Θ

∑
i

log
∫

P (Di |M ,θi )P (θi |Θ)dθi (5.20)

Similar to (Huys et al., 2011), we solved the above optimization problem using the expectation-

maximization (EM) procedure (Dempster, Laird, & Rubin, 1977). This procedure starts with

an initial value for the hyper-parameters Θ, using which the posterior distribution of each

individual’s parameter will be estimated using the Laplace approximation. These individual

posterior distributions then shape a new value for the hyper-parameters (Θ), which will be

used again to get new posterior distribution for each individual. This process continues until

the hyper-parameters do not change anymore across iterations. Please refer to (Huys et al.,

2011) for the details of the method.

The prior over all the individual level parameters (θi ) where assumed to be a Gaussian distribu-
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tion, and the mean and variance of the Gaussian were included in the hyper-parameters (thus

the number of hyper-parameters for each model were twice as the number of free parameters

of the model). Parameters that had a limited range (e.g., learning rates), were transformed to

stratify the constrains.

We used the NLOPT software package (S. G. Johnson, n.d.) for nonlinear optimization using

‘BOBYQA’ algorithm. Finally, we used ‘DerApproximator’ package (Kroshko, n.d.) in order to

estimate the Hessian at the MAP point.

5.5.7 Model comparison results

In total we tested 328 models (MB:n=8, MF:n=32, MB-MF:n=32, HMB:n=256). For the best

four models in each family, Table 5.3 below represents the negative log-model evidence

(− logP (D|M)) (obtained from equation 5.17) for each model, the number of free parameters

of each model (df), the free parameters of each model, and the family of each model. The

table also represents a pseudo-r statistic (p–r 2), which is a normalized measure of the degree

of variance accounted for in comparison to a model with random choices (averaged over

subjects).

Out of 328 models that we tested, one of the models, which had eight free parameters

(β1,β3,η1,η2,k1,k2,φ, I ), was not identifiable (the estimated hessian matrix was not a positive-

definite matrix), and therefore it was excluded from the analysis.

Table 5.4 below represents estimated parameters for each individual in the best model (in-

dicated by * in the table). The term ‘–logP (Di |M ,ΘML)’ represents the negative log-model

evidence for each subject, obtained from equation 5.19.
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Table 5.3 – For the best four models in each family, the table represents the negative log-model
evidence (− logP (D|M)) for each model, the number of free parameters of each model (df),
the free parameters of each model, and the family of each model. The table also represents a
pseudo-r statistic (p–r 2), which is a normalized measure of the degree of variance accounted
for in comparison to a model with random choices (averaged over subjects).

model family free-parameters p-r 2 df − logP (D|M)
HMB* β1,η1,k2,φ, I = 0 0.21 4 1172.09
HMB β1,η1,k2,k3,φ, I = 0 0.21 5 1176.48
HMB β1,η1,k1,k2,φ, I = 0 0.21 5 1178.90
HMB β1,η1,k2,φ, I 0.21 5 1178.93
MF β1,β2,α1,λ 0.17 4 1219.57
MF β1,β2,α1,λ,k 0.18 5 1220.41
MB β1,β2,η,k 0.18 4 1222.35
MF-MB β1,β2,α1,λ, w 0.18 5 1223.02
MF-MB β1,β2,α1,λ,k, w 0.19 6 1224.45
MF β1,α1,λ 0.16 3 1224.62
MF β1,α1,λ,φ 0.17 4 1224.74
MF-MB β1,α1,λ, w 0.17 4 1224.82
MB β1,β2,η 0.17 3 1225.02
MB β1,η,k,φ 0.17 4 1225.07
MF-MB β1,α1,λ, w,φ 0.18 5 1225.89
MB β1,β2,η,φ,k 0.18 5 1226.82

Table 5.4 – Value of the estimated parameters for each subject.

subject df p-r 2 no. choices − logP (Di |M ,ΘML) β1 η1 φ k2

0 4 0.25 244 128.11 1.91 0.83 1.33 0.67
1 4 0.30 214 105.23 1.94 0.77 2.53 0.82
2 4 0.18 264 150.42 1.60 0.78 2.20 0.68
3 4 0.32 206 98.92 1.84 0.78 2.68 0.66
4 4 0.06 286 188.33 0.99 0.78 1.96 0.47
5 4 0.20 272 152.94 1.53 0.73 2.38 0.66
6 4 0.19 296 168.19 1.38 0.82 2.36 0.94
7 4 0.15 252 149.48 1.26 0.79 2.28 0.62
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6 Conclusion

6.1 Summary of contributions

The current thesis investigated the theoretical and behavioral properties of automatic actions,

and their relations to goal-directed actions. In chapter 2, we introduced different forms of

decision-making processes in the brain, and motivated the fact that the hierarchical decision-

making process can be regarded as the unifying principle underlying various forms of actions.

Building on this assumption, in chapter 3, we provided a new normative computational model

for learning action sequences as the building blocks of hierarchical decision-making, and

we explored the power of the model in explaining different forms of automatic actions. In

particular, using the proposed computational model, we elaborated the role that dopamine

plays in learning action sequences, and in hierarchical decision-making. Then, we tested

the predictions of the proposed model in chapter 4, and we provided experimental data in

humans, that suggested the computational model can explain some behavioral phenomena

that the previous accounts cannot explain. Finally, in chapter 5, we translated the task that

was developed in chapter 4, to an experimental protocol in rats, and showed, that similar to

the results of humans, rats also utilize hierarchical decision-making.
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6.2 Future directions

In chapter 3, we proposed a normative model for the formation of action sequences, and

their integration with model-based reinforcement learning. This normative model includes

certain underlying computational signals, which can be investigated using model-based fMRI

experiments. In chapter 4, we provided an experimental method for investigating hierarchical

decision-making in humans, which can be used for studying the operation of this method in

humans from different populations with psychiatric disorders. Similarly, the task developed in

chapter 5 for rats, can be followed by investigating the lesion or inactivation of different brain

regions, to uncover the role of each region of the brain in implementing the model.

On the theoretical side, it is likely that other reinforcement learning systems, such as model-

free reinforcement learning, as suggested by previous works, operate concurrently with hier-

archical model-based reinforcement learning. Investigating this possibility using outcome

devaluation experiments, in conjunction with the task developed in chapter 5, can be an

important step toward obtaining a more complete picture of the decision-making processes

in the brain.
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