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Clinical and experimental observations show individual differences in
the development of addiction. Increasing evidence supports the hy-
pothesis that dopamine receptor availability in the nucleus accumbens
(NAc) predisposes drug reinforcement. Here, modeling striatal-midbrain
dopaminergic circuit, we propose a reinforcement learning model for ad-
diction based on the actor-critic model of striatum. Modeling dopamine
receptors in the NAc as modulators of learning rate for appetitive—but
not aversive—stimuli in the critic—but not the actor—we define vulner-
ability to addiction as a relatively lower learning rate for the appetitive
stimuli, compared to aversive stimuli, in the critic. We hypothesize that
an imbalance in this learning parameter used by appetitive and aversive
learning systems can result in addiction. We elucidate that the interaction
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between the degree of individual vulnerability and the duration of expo-
sure to drug has two progressive consequences: deterioration of the im-
balance and establishment of an abnormal habitual response in the actor.
Using computational language, the proposed model describes how devel-
opment of compulsive behavior can be a function of both degree of drug
exposure and individual vulnerability. Moreover, the model describes
how involvement of the dorsal striatum in addiction can be augmented
progressively. The model also interprets other forms of addiction, such as
obesity and pathological gambling, in a common mechanism with drug
addiction. Finally, the model provides an answer for the question of why
behavioral addictions are triggered in Parkinson’s disease patients by D2
dopamine agonist treatments.

1 Introduction

Addiction is a state of compulsive drug-seeking and drug-taking behavior
maintained despite its adverse consequences (American Psychiatric Asso-
ciation, 2000). After long-term drug exposure, due to the action of drugs
on the brain, individuals become insensitive to the social, behavioral, and
health consequences of drug abuse. Nevertheless, this behavior appears
only in approximately 20% of individuals initially exposed to the drug
(Anthony, Warner, & Kessler, 1994). In humans, clinical observations have
shown individual differences in the development of addiction (O’Brien,
Ehrman, & Ternes, 1986; de Wit, Uhlenhuth, & Johanson, 1986). Although
compulsive behavior appears in animals, all animals that used drugs do not
exhibit compulsive behavior (Belin, Mar, Dalley, Robbins, & Everitt, 2008;
Deroche-Gamonet, Belin, & Piazza, 2004). Neural and behavioral individual
differences underlying vulnerability to addiction are of great importance,
and investigation may help identify humans at risk. From a behavioral
viewpoint, studies of human addicts and animal models of addiction have
implicated some traits, such as impulsivity and novelty seeking, that pre-
date the onset of addiction-like behavior. In a now-classic study Piazza,
Deminière, Le Moal, and Simon (1989) reported that novelty seeking in
rats predicts development of amphetamine self-administration. Also, im-
pulsive behavior correlates with a tendency to addiction (Koob & Le Moal,
2005). Belin and colleagues (2008) have shown that while novelty seeking
predicts a tendency to initiate drug use, impulsivity predicts the devel-
opment of addiction. Although neural factors that predispose propensity
to addiction-like behavior are not fully understood, a wealth of evidence
has shown that reduced availability of dopamine receptors in the striatum
(Nader, Czoty, Gould, & Riddick, 2008; Volkow, Wang, Fowler, & Telang,
2008), in particular NAc (Dalley et al., 2007; Martinez et al., 2009), correlates
with the propensity to increase drug use. More important, using an animal
model of compulsive behavior, Everitt and Robbins (2005) and colleagues
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have shown that a low availability of NAc D2 receptors predisposes to the
development of compulsive behavior (Belin et al., 2008; Dalley et al., 2007).

Experimental studies have shown that another major factor that con-
tributes to the development of addiction is the degree of drug exposure
(Deroche-Gamonet et al., 2004; Vanderschuren & Everitt, 2004). In fact,
addiction results from the interaction of two factors: the degree of vulner-
ability and the degree of exposure to drug. There is now wide agreement
that the interaction of these two factors impairs the brain’s reward learning
and memory systems (Everitt et al., 2008; Hyman, Malenka, & Nestler, 2006;
Kalivas, 2009; Koob & Le Moal, 2005). Specifically, addictive drugs affect be-
havior, at least partly, because of their ability to increase synaptic dopamine
in the NAc, which plays a critical role in processing natural rewards such
as food, as well as in other brain structures that receive dopamine afferents
from the ventral tegmental area (VTA), such as the prefrontal cortex (PFC)
and amygdala (Robinson & Berridge, 1993). By viewing addiction as a mal-
function of the reward learning system and decision making, it should be
possible to model this behavioral phenomenon based on decision theory.

Reinforcement learning (RL) theory is perhaps the most popular theo-
retical framework for decision making in environments that require learn-
ing from rewards and punishments. RL has another crucial benefit for
modeling addiction: overwhelming evidence supports the hypothesis that
dopamine neurons, a major site of action of both natural rewards and ad-
dictive drugs, encode prediction error (the difference between the expected
and the acquired value of an action), which is a major component of RL the-
ory (Bayer & Glimcher, 2005; Schultz, Dayan, & Montague, 1997). Taking
into account these excellent features of RL for modeling addiction, we and
others have proposed neurocomputational models to explain possible ways
that addiction emerges (Dayan, 2009; Dezfouli et al., 2009; Gutkin, Dehaene,
& Changeux, 2006; Redish, 2004; Redish, Jensen, Johnson, & Kurth-Nelson,
2007; Redish & Johnson, 2007; Takahashi, Schoenbaum, & Niv, 2008; Zhang,
Berridge, Tindell, Smith, & Aldridge, 2009).

To model the effects of addiction on the reward system requires taking
into account different interactions of drug and the dopaminergic circuitry.
We can identify four interactions. First, addictive drugs and natural rewards
increase the phasic activity of the dopamine signal (Hyman et al., 2006). Al-
though this increased activity can be accommodated in the case of natural
rewards, a neuropharmacological noncompensable component in phasic
dopamine produced by some drugs, such as cocaine, can lead to addic-
tion (Redish, 2004). Although modeling this drug action explains a possible
way that addiction develops, it is not the only reason that these drugs are
addictive (Redish, 2004; Redish, Jensen, & Johnson, 2008). Specifically, this
cannot be the way that some natural rewards, such as fatty foods and gam-
bling, lead to addiction (Ahmed, 2004). Indeed, overwhelming evidence
supports the idea that addiction to both natural rewards and addictive
drugs has some common substrates, and this includes similar effects on
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the dopaminergic circuit (Potenza, 2008; Volkow et al., 2008). However,
natural rewards, unlike drugs, produce a dopamine signal that can be ac-
commodated (Ahmed, 2004). Second, chronic drug consumption causes
long-lasting dysregulation of the brain reward threshold (Ahmed & Koob,
1998), which is mainly dependent on the dopamine circuitry (Haber &
Knutson, 2009). This persistent dysregulation causes long-lasting changes
in processing natural rewards such as sexually evocative visual stimuli
(Garavan et al., 2000) and secondary rewards such as money (Goldstein
et al., 2007). This action of drugs on dopaminergic circuitry can be related
to either regulation of tonic dopamine in NAc or a change in the availabil-
ity of dopamine receptors in the striatum (Ahmed & Koob, 2005). Third,
dopamine receptors within the striatum, especially NAc, play an important
role in vulnerability to addiction (Everitt et al., 2008; Volkow et al., 2008).
Furthermore, D2 dopamine receptors in the striatum play a key role in the
development of addiction to natural rewards (Volkow et al., 2008). Hence,
the involvement of the striatal dopamine receptors in vulnerability to the
development of addiction is a common component of both drug and food
addiction (although the magnitude of their effect can be different). Fourth,
although the initial influences of drug are mostly restricted to regions that
receive afferents from VTA, including NAc, PFC, and amygdala, chronic
exposure affects synaptic dopamine in more dorsal domains of the stria-
tum, which receives dopamine afferents from subtantia nigra pars compacta
(SNc), a structure contiguous within the midbrain with the VTA (Everitt &
Robbins, 2005; Hyman et al., 2006). In particular, through the development
of addiction in susceptible rats, as extensively used in animal models of
addiction, the dorsal striatum plays a prominent role in consolidation of
drug-seeking habits (Everitt et al., 2008). An important role for the dorsal
striatum in human addicts is also reported (Volkow et al., 2006; Wong et al.,
2006); however, the ventral- to dorsal-striatum pathway is probably not the
sole vulnerable pathway that causes the emergence of addiction (Redish
et al., 2008), importantly in humans (Ahmed, 2008). Previously RL mod-
els have been proposed by focusing on some of these interactions, such as
the effects of drug on phasic dopamine (Dayan, 2009; Dezfouli et al., 2009;
Redish, 2004), long-lasting dysregulation of the reward system by drug
abuse (Dezfouli et al., 2009; Gutkin et al., 2006), and the distinctive func-
tions of striatum subdivisions and their dopamine sources in development
of addiction (Dayan, 2009; Takahashi et al., 2008).

Redish proposed the first RL model for addiction (Redish, 2004) by focus-
ing on the first effect of drugs on dopamine circuitry: neuropharmacological
increase in the phasic activity of dopamine. He proposed that a noncom-
pensable component in the prediction error, phasic activity of dopamine
signal, results in overvaluation of drug choice and leads to addiction. His
model describes a way for the emergence of compulsive behavior: progres-
sive insensitivity of drug choice to the costs associated with drug abuse. We
previously extended this model for cocaine addiction by incorporating the
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pharmacological effects of cocaine on the threshold of the reward system,
using the average reward RL framework (Dezfouli et al., 2009). Taking into
account a possible role for tonic dopamine in NAc and also D2 dopamine
receptors in the striatum (Ahmed & Koob, 2005), we suggested a possible
way that cocaine affects the threshold of the reward processing system.
However, the sole reason for cocaine addiction in our previous model is
exactly the same as with Redish’s model: phasic dopamine remains above
zero for a long time and so results in an overvaluation of drug choice. Hence,
our previous model extended Redish’s approach in modeling cocaine ad-
diction by taking into account the second effect of drugs on the dopamine
circuitry. Our approach made it possible to explain some important features
of addiction, such as an increased selection of impulsive choice in a delay-
discounting task after long-term drug use. However, since the sole reason
for cocaine addiction in our previous model is the same as Redish’s, our
model, like his, cannot account for addictions that are not accompanied by
direct pharmacological effects on striatal synaptic dopamine.

Here, we focus on two interactions of drug and dopaminergic circuitry:
the role of NAc dopamine receptors in vulnerability to addiction and dis-
tinct functions of striatal subdivisions in the development of addiction.
Utilizing a modified version of the actor-critic model, a popular RL frame-
work, and modeling the availability of dopamine receptors in striatal sub-
divisions, we propose a model to explain the role of dopamine receptors
and striatal subdivisions in the development of addiction-like behavior. We
seek to find an explanation for the fact that development of addiction de-
pends on the interaction of the degree of drug exposure and the degree of
individual susceptibility. In addition, we attempt to construct a model that
can accommodate both addiction to addictive drugs and natural rewards.

In section 2, we review some neural evidence supporting the core idea
of the classic actor-critic model. However, we explain that in contrast to this
model, an action-dependent value-learning rule is more consistent with
neural observations, and therefore we build our model based on these
facts. Then we incorporate the role of NAc dopamine receptors in reward
learning into the model, as well as the modifications undergone by these
receptors due to the effect of drugs. In section 3, after outlining the theory in
a typical compulsivity problem, we explain the major results of the model.
Finally, in section 4, we discuss the relation between our model and some
previous ones, a behavioral prediction of the model, and some suggestions
for future neural experiments and computational models.

2 The Model

2.1 Actor-critic Model. For the purpose of maximizing the accrual of
appetitive outcomes and minimizing the aversive ones, the decision maker
must learn the consequences of feasible actions by experiencing them in the
environment. This acquired knowledge can then direct decisions toward
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desirable outcomes in the future. RL theory (Sutton & Barto, 1998) has for-
mulated this concept in the form of a value function that assigns a value
to each choice. These assigned values are updated each time the decision
maker acquires a certain amount of reward or punishment after performing
an action. Action selection in the face of environmental stimuli is based on
these estimated values; that is, an action with a relatively high value is more
likely to be chosen. Actor-critic is a putative reinforcement learning model
that subdivides the decision-making process into prediction and action-
selection subtasks, where critic and actor modules are responsible for these
two subtasks, respectively (Sutton & Barto, 1998). The two systems are in-
terconnected through a prediction error signal—the difference between the
expected and the acquired value of an action. It is becoming increasingly
apparent that the striatum and its dopaminergic progressions mediate dif-
ferent functions in terms of the actor-critic model; while the ventral striatum,
including NAc, is involved in value learning for the purpose of prediction,
the dorsal striatum is responsible for action selection (Montague, Hyman,
& Cohen, 2004). These dissociated roles of striatal subdivisions are con-
sistent with a wealth of evidence showing that while the ventral striatum
underlies reward processing and motivation (Cardinal, Parkinson, Hall, &
Everitt, 2002), the dorsal striatum is involved in motor control (Packard
& Knowlton, 2002). Consistently, functional magnetic resonance imaging
(fMRI) in humans has measured the blood oxygen level–dependent sig-
nal in the NAc during an instrumental conditioning task and its yoked
Pavlovian conditioning task. Both tasks require the same learning process,
but only the former requires action selection (O’Doherty et al., 2004). This
experiment has shown that although the NAc is activated in both tasks
(critic), the dorsal striatum is activated only during the instrumental task
(actor). Further evidence for striatal functional dissociation in instrumental
learning has been found in rats using a reversible lesion technique. Atallah,
Lopez-Paniagua, Rudy, & O’Reilly (2007) have shown that while NAc is
critical for learning, the dorsal striatum is involved in performance but not
learning.

Classically, it is assumed that the actor-critic framework stores state-
dependent values in the critic and state-action-dependent preferences in
the actor (Sutton & Barto, 1998). The critic underlies learning by com-
puting a prediction error according to its values, and the actor chooses
action according to its preferences. Nevertheless, recent instrumental learn-
ing studies support the idea that the prediction error underlying learning in
instrumental conditioning tasks is computed based on state-action values
rather than being action independent. Indeed, most of the earlier stud-
ies have used a classical conditioning task or a forced-choice instrumental
conditioning task, but not tasks requiring selection among competing ac-
tions. In an elegant study, Morris, Nevet, Arkadir, Vaadia, and Bergman
(2006) showed that the activity of SNc dopamine neurons in nonhuman
primates performing an instrumental conditioning task needed to choose
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between two competing choices is modulated by the value of upcoming
action. Further evidence supporting the hypothesis that dopamine neu-
rons encode action-dependent prediction error has come from a study by
Roesch, Calu, and Schoenbaum (2007), who recorded rats’ VTA dopamine
neurons during a free-choice instrumental task. In addition to these studies
on midbrain dopamine neurons, more recent studies in rats have revealed
that some ventral striatal neurons encode information about upcoming ac-
tion. For example, Kim, Sul, Huh, Lee, and Jung (2009) showed that action
values are present in the rats’ ventral and dorsal striatal while performing
a free-choice task. Stronger evidence has come from a study by Ito and
Doya (2009), showed that most information needed for updating a behav-
ioral choice, such as information about reward, action, and state, is present
in rats NAc. Most important, Roesch, Singh, Brown, Mullins, and Schoen-
baum (2009) aimed at investigating the role of ventral striatum in mediation
between cue-evoked activity and decision, have shown that while ventral
striatal neurons in a forced-choice task reflect the value of the associated
odor cue, which is equivalent to the value of the forced choice, some ven-
tral striatal neurons encode the value of upcoming action in a free-choice
task. Indeed, the activity of the ventral striatum is correlated with the in-
tegration of value and imminent decision, which is consistent with studies
showing that the ventral striatum encodes information about the outcome
of choosing an action (Carelli, 2002; Janak, Chen, & Caulder, 2004; Kim
et al., 2007; van der Meer & Redish, 2009; Nicola, 2007; Taha & Fields,
2005).

Ito and Doya (2009) and Roesch and colleagues (2009) not only have
reported that value representation in ventral striatum is action oriented,
but also have confirmed the general role of the ventral striatum in terms of
the actor-critic model— its involvement in learning but not action selection.
Roesch et al. (2009) reported that the values of unselected actions are not
represented in the ventral striatal neurons and thus, the information in
this structure is not sufficient for action selection. Unlike this observation,
increasing evidence has shown that the values of actions, even those that
are not selected, are encoded by dorsal striatal neurons (Lau & Glimcher,
2008; Pasquereau et al., 2007; Samejima, Ueda, Doya, & Kimura, 2005). For
example, Samejima et al. (2005) have shown that dorsal striatum encodes
action values while monkeys should choose between two different actions.
Consistently, Ito and Doya (2009) have reported that information related
to action choice is very weak in the ventral striatum before the onset of
the choice, but increases rapidly after choice onset. Taking into account
their previous study (Samejima et al., 2005) and also other studies (Lau &
Glimcher, 2008; Pasquereau et al., 2007), they concluded that although action
values are present in the ventral striatum, action-value coding neurons
are less dominant in the ventral, as compared to dorsal, striatum, and so
the information encoded in the ventral striatum can be useful for action
evaluation and learning rather than action selection.
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In line with these observations, we assume that the ventral and dorsal
striata serve different functions in instrumental conditioning tasks. More-
over, we assume that the critic computes action-dependent prediction error,
which in turn has an impact on downstream dopamine neurons that subse-
quently modify both the critic and the actor. In formal language, supposing
that the decision maker leaves its current state, st , to the next state, st+1,
after choosing an action, a , and obtaining a reward, rt , the prediction error
signal can be calculated as

δ = rt + γ V(st+1, b) − V(st, a ), (2.1)

where V(st, a ) is the critic’s expected value for the action a in state st , γ is the
discounting factor, which indicates the relative incentive value of immediate
compared to delayed rewards, and b is the action with maximum value in
the next state.

Within this computational framework, the prediction error signal is em-
ployed for updating the critic’s value, as well as updating the behavioral
preference of the decision maker, stored by the actor:

wV(a ) ← wV(a ) + αδst (2.2)

wP (a ) ← wP (a ) + αδst, (2.3)

where wV(a ) and wP (a ) are the weights for a linear estimation of the critic’s
values and actor’s preferences, respectively (McClure, Daw, & Montague,
2003; Montague, Dayan, & Sejnowski, 1996). α is the learning rate, describ-
ing the degree to which the prediction error signal affects values and prefer-
ences. In general, st can be a vector that represents different stimuli. Here we
use binary representation, in which the ith element of the st is 1 if and only
if the stimulus i is present; otherwise this element is equal to 0. Apparently
if the simulated environment has only one stimulus, we simply have st = 1
whenever that stimulus is present and st = 0 otherwise. The critic’s values
and actor’s preferences are then calculated according to their weights:

V(st, a ) = wV.st (2.4)

P(a | st) = wP .st, (2.5)

where P(a | st) is the actor’s behavioral preference of choosing a when the
decision maker is in state st . Although neural evidence supports the idea
of the existence of two separate action-dependent structures for learning
and action selection, the benefit of the existence of two separate structures
for a pair of stat-action is not clear from a normative viewpoint. Roesch
et al. (2009) have suggested a broad idea for describing the difference in
representation of action in these two structures. They suggested that while
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neuronal activity showing actions’ preferences in the dorsal striatum is bi-
ased according to the neurons’ anatomy and the direction of response coded
by them, neural activity showing actions’ values in ventral striatum is less
dependent on a particular spatial response. For example, while neurons in
the occulomotor caudate typically show greater activity for saccades made
in the direction opposite the recording hemisphere (Lauwereyns, Watan-
abe, Coe, & Hikosaka, 2002), almost an equal number of neurons in the
ventral striatum prefer rightward and leftward movement (Roesch et al.,
2009). Further investigations are required to answer this question exactly.

Finally, having preferences for actions in each state, the actor selects a
choice using the softmax rule:

π(a ) = eβ P(a |st )∑
b eβ P(b|st )

, (2.6)

where π(a ) is the probability of choosing a , and β is a factor that determines
the rate of exploration.

2.2 The Proposed Model. The striatum and its connections with mid-
brain dopaminergic neurons play a critical role in drug taking and drug
addiction. In order to investigate the role of these brain regions in suscep-
tibility to addiction and compulsive drug seeking, a more elaborate model
than the simple actor-critic is needed. In this section, we incorporate more
detailed neural findings into the actor-critic model of the striatum to ex-
plain a wide variety of evidence from the neuroanatomy of the striatum
and its connections with the midbrain dopaminergic neurons. In taking
into account the role of the NAc dopamine receptors at different stages of
addiction and also addressing vulnerability to addiction, we slightly modify
equation 2.2 to capture the function of NAc dopamine receptors.

2.2.1 The NAc Shell and Posteromedial VTA Play a Critical Role in Initial
Phases of Addiction. NAc can be divided histologically and anatomically
into core and shell regions. It has been suggested that drugs affect responses
by increasing synaptic dopamine in the NAc, especially within the shell
region (Di Chiara et al., 2004; Hyman, 2005; Ikemoto, 2007). For example,
rats easily learn to self-administer cocaine and amphetamine into the shell,
but not the core (Ikemoto, 2003; Ikemoto, Qin, & Liu, 2005; Rodd-Henricks,
McKinzie, Li, Murphy, & McBride, 2002). Intracranial self-administration
with a mixture of D1 and D2 receptor antagonists shows the critical role of
the NAc shell in mediating the rewarding effects of drugs (Shin, Qin, Liu,
& Ikemoto, 2008). Moreover, infusions of dopamine receptor agonists and
antagonists into the shell alter the rate of drug self-administration in the rats
(Carlezon, Devine, & Wise, 1995; Fenu, Spina, Rivas, Longoni, & Di Chiara,
2006; Ikemoto, Glazier, Murphy, & McBride, 1997; Spina, Fenu, Longoni,
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Rivas, & Di Chiara, 2006). Similar results have also been demonstrated by
lesion studies (Sellings, McQuade, & Clarke, 2006b, 2006a; Sellings & Clarke,
2003). Anatomically, the NAc shell receives dopaminergic projection from
posteromedial VTA (Ford, Mark, & Williams, 2006; Ikemoto, 2007). This
part of the VTA is mostly affected by appetitive, but not aversive, stimuli
(Bolanos et al., 2003; Carlezon et al., 2000; Ikemoto, 2007; Olson et al., 2005).
This topographical difference within the VTA is important for mediating
the rewarding effects of many drugs such as cocaine, nicotine, carbachol,
cannabinoids, ethanol, and opiates (Carlezon et al., 1997, 2000; Ford et al.,
2006; Ikemoto, Murphy, & McBride, 1998; Ikemoto et al., 1997; Ikemoto &
Wise, 2002; Rodd et al., 2004, 2005; Zangen, Ikemoto, Zadina, & Wise, 2002;
Zangen, Solinas, Ikemoto, Goldberg, & Wise, 2006) and also for natural
rewards such as sucrose (Bolanos et al., 2003).

2.2.2 The NAc Receptors Modulate the Rewarding Effect of the Drug and
Predict Vulnerability to Addiction. NAc dopamine receptors play a crucial
role in different stages of drug use. For cocaine, drug self-administration
is strongly regulated by both D1-like (hereafter D1) and D2-like (hereafter
D2) receptors (Self, 2004). Cocaine taking diminishes by pretreatment with
either D1 or D2 receptor agonists (Caine, Negus, Mello, & J. Bergman, 1999),
while pretreatment with either D1 or D2 receptor antagonists increases
cocaine taking (Corrigall & Coen, 1991). Neuroimaging studies have
demonstrated a crucial role for D2 receptors, specifically in the NAc, in
propensity to drug use. In human subjects, individuals with lower D2 recep-
tor availability report psychostimulants to be pleasant, while individuals
with higher D2 receptors find the same psychostimulants aversive (Volkow
et al., 1999). Positron emission tomography (PET) studies in nonalcoholic
human subjects with a dense family history for alcoholism have shown
that they have higher D2 receptors in the striatum than individuals without
such family histories (Volkow et al., 2006). In nonhuman primates, cocaine
self-administration propensity is negatively correlated with the availability
of D2 receptors and also social dominance (Morgan et al., 2002; Nader et
al., 2006). Consistently, increased D2 receptors in rat NAc markedly reduce
alcohol self-administration (Thanos et al., 2001). Recently and more impor-
tant, it has been reported that D2 receptors availability in rat NAc, but not
dorsal striatum, predicts the escalation of cocaine self-administration and
progression to compulsive behavior (Belin et al., 2008; Dalley et al., 2007).

Although evidence for the role of D1 receptors in predisposition to addic-
tion is limited, low D1 receptor availability in the ventral striatum recently
has been reported to be associated with the choice to self-administer co-
caine (Martinez et al., 2009). Moreover, extensive evidence has shown that
coactivation of both D1 and D2 receptors in the NAc, especially the shell
region, is necessary for mediating the rewarding effects of drugs at the ini-
tial stages of drug use (Bachtell, Whisler, Karanian, & Self, 2005; Edwards,
Whisler, Fuller, Orsulak, & Self, 2007; Hopf, Cascini, Gordon, Diamond, &
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Bonci, 2003; Inoue et al., 2007). For example, rats self-administer both D1
and D2 receptor agonists into the NAc shell in combination but not alone
(Ikemoto et al., 1997). In addition, the effect of dopamine in NAc shell is
inhibited by either D1 or D2 antagonist (Inoue et al., 2007).

In sum, dopaminergic projections from posteromedial VTA to NAc
shell are involved in appetitive but not aversive learning and regulate the
postsynaptic activity of dopamine receptors in the NAc shell. These pro-
jections mediate the prediction error signal used for instrumental learning
in the downstream circuits. Computationally, the critic (i.e. NAc shell) uses
the prediction error signal, carried by the phasic activity of dopamine neu-
rons originating from posteromedial VTA, to update its value estimations.
The prediction error is itself modulated by the availability of dopamine
receptors in the critic (NAc shell) in the case of appetitive stimuli. Hence,
we substitute equation 2.2 with

wV(a ) ← wV(a ) + κcαδst if r > 0, (2.7)

where κc is the normalized availability of dopamine receptors in the NAc
shell, which is equal to 1 in normal situations. We do not dissociate the
function of D1 and D2 receptors in equation 2.7 because evidence supports
the hypothesis that decreased availability of either D1 (Martinez et al., 2009)
or D2 (Dalley et al., 2007) receptors in the NAc predisposes a propensity
to developing addiction. More important, cooperative activity of both re-
ceptors in the NAc shell is critical for mediating the rewarding effects of
the drug (Hopf et al., 2003; Ikemoto et al., 1997; Self, 2004), and so lower
availability of either D1 or D2 influences the rewarding effects of the drug.
It is noteworthy that the functional role of D1 and D2 receptors in more
dorsal striatal organizations is likely different, especially in mediating ap-
petitive and aversive learning (Hazy, Frank, & O’Reilly, 2007). By modeling
dopamine receptor availability in the NAc shell, we define vulnerability to
addiction by κc < 1, that is, a decreased availability of D1 or D2 receptors
within the NAc shell.

Since the posteromedial VTA dopamine neurons are involved in only
appetitive but not aversive learning, the prediction error for aversive stimuli
is not modulated by κc , and the original prediction error signal will be used
directly for the purpose of value learning. Though serotonergic system has
been proposed as a candidate for handling aversive outcomes of decisions
(Daw, Kakade, & Dayan, 2002; Dayan & Huys, 2008), regardless of what
neuronal circuit is responsible for handling it, we use equation 2.2 in the
case of r < 0.

2.2.3 Long-Term Drug Use Affects Availability of Dopamine Receptors in the
NAc. Chronic exposure to a drug affects dopamine receptor availability
within the striatum. Human subjects with a wide range of drug addictions
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have shown significant reductions in D2 receptor density within the stria-
tum, including the NAc and the dorsal striatum (Volkow, Fowler, Wang, &
Swanson, 2004). In nonhuman primates, D2 receptor reduction is initially
significant in ventral regions, but by chronic exposure to the drug, the effects
of cocaine spread dorsally to include the dorsal striatum (Nader et al., 2002;
Porrino, Daunais, Smith, & Nader, 2004). Nevertheless, the effect of the drug
on D1 receptor density is still a matter of significant debate. Animal studies
have shown both an increase (Nader et al., 2002) and a decrease, particularly
in the shell region (Edwards et al., 2007; Moore, Vinsant, Nader, Porrino,
& Friedman, 1998), in striatal D1 receptor availability after long-term
cocaine use.

To model the dynamics of receptor availability in NAc, which plays a
critical role in addiction, we assume that the availability of dopamine re-
ceptors in NAc decreases with drug use. This assumption is consistent with
evidence for D2 receptor changes by drug use and also with the critical role
of coactivation of D1 and D2 receptors within the NAc shell for mediat-
ing the rewarding effects of drug and natural rewards (Hopf et al., 2003;
Ikemoto et al., 1997; Self, 2004). D2 receptors’ reduction depends on three
factors: the receptors’ initial density, dopamine release, and the duration
of drug exposure (Laruelle et al., 1997; Mach et al., 1997; Porrino et al.,
2004). Hence, we model the reduction of the NAc shell receptors by slightly
reducing κc by each experience with drug. We propose that κc decreases
exponentially, depending on dopamine release in the NAc shell, duration
of drug exposure, and current density of receptors. In fact, after each action,
the amount of dopamine release in the critic, which disruptively affects
dopamine receptors, is computed as

δcd =
{

δ − κcδ0 if δc > κcδ0

0 if δc < κcδ0
, (2.8)

where δ0 is a constant threshold. Then κc will be reduced according to the
calculated disruptive amount of dopamine release:

κc ← κce−δcd /τ , (2.9)

where τ is a constant that determines the degree of influence of δcd on κc .
δ0 in equation 2.8 is a free parameter of the model, which determines the
range of dopamine release that is able to decrease receptor density. Ob-
viously this free parameter should be more than the maximum possible
natural reward; otherwise, the natural reward will induce reduction in the
availability of receptors under normal conditions, that is, κc = 1. Another
factor that affects receptor density is the current density of the receptors,
and so the initial availability of receptors influences the rate of receptor
reduction. Therefore, δcd will be zero for unsusceptible subjects in the face
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of the highest possible natural reward and, hence, no reduction will hap-
pen to the availability of receptors. For the normal release of dopamine, the
availability of receptor remains unchanged. However, stimuli with abnor-
mally high rewarding effects reduce the level of receptors in the NAc shell.
This reduction by itself intensifies the rate of receptor reduction and, hence,
subsequent consumption of the reward will decrease the availability of re-
ceptors further. Finally, after long-term abstinence, the dopamine receptors
recover to their original level (Beveridge, Smith, Nader, & Porrino, 2009).
This recovery of dopamine receptors and perhaps its dynamics might be
significant to relapse after long-term extinction. However, since we do not
focus on this feature of addiction, modeling the recovery of receptors is not
required here.

2.2.4 Dorsal Striatum Plays a Prominent Role in Later Phases of Addiction.
Although the initial reinforcing effects of drugs depend on the NAc, the
consolidation of rigid habitual responses and ultimately compulsive drug-
seeking behavior depends on the dorsal striatum and SNc (Berke & Hyman,
2000; Everitt et al., 2008; Everitt & Robbins, 2005; Hyman et al., 2006). For
example, the rat dorsal striatum and its dopaminergic innervations play
an important role in cocaine seeking before cocaine self-administration (Ito,
Dalley, Robbins, & Everitt, 2002). Furthermore, blockade of dopamine in the
rat dorsal striatum inhibits cocaine seeking in a second-order schedule of
reinforcement (Vanderschuren, Di Ciano, & Everitt, 2005). The progressive
involvement of dorsal striatal-dependent processes in cocaine-self admin-
istration has also been shown in metabolic and molecular imaging studies
of nonhuman primates (Porrino, Lyons, Smith, Daunais, & Nader, 2004). In
humans, an increase in dopamine release in the dorsal striatum in cocaine-
addicted individuals watching cocaine cues has been reported (Volkow et
al., 2006). Hence, it is hypothesized that the behavioral transition from goal
directed to habitual and compulsive drug seeking is based on a transi-
tion of control over drug-seeking behavior from the ventral striatum and
prefrontal structures to the dorsal striatum, which is mainly mediated by
striatal dopaminergic innervations (Everitt & Robbins, 2005). This theory
is inspired by studies in animal behavioral psychology showing that the
dorsal striatum plays a critical role in habitual behavior (Balleine, Delgado,
& Hikosaka, 2007). Nevertheless, there is no agreement for the role of D1
and D2 receptors (Frank, Moustafa, Haughey, Curran, & Hutchison, 2007;
Noble, 2003) or the involvement of SNc dopamine neurons in appetitive and
aversive learning (Bayer & Glimcher, 2005; Matsumoto & Hikosaka, 2009),
as well as for the dynamics of D1 receptors’ changes by drug use (Edwards
et al., 2007; Nader et al., 2002). Hence, we do not incorporate the role of
dorsal-striatal receptors into the model to explain all questions noted in
section 1. However, there is some evidence for distinct functions of D1 and
D2 receptors in the NAc shell, core, and dorsal striatum (Hazy et al., 2007;
Pezze, Dalley, & Robbins, 2007). Additionally, although it has been shown
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that long-term drug abuse decreases the availability of D2 receptors in the
dorsal striatum (Nader et al., 2002), its effect on D1 receptors is controversial
(Edwards et al., 2007; Nader et al., 2002). Moreover, it has been proposed
that D2 receptors in the dorsal striatum are involved in learning from nega-
tive but not positive outcomes (Hazy et al., 2007), which is compatible with
recent evidence on Parkinsonism (Frank, Seeberger, & O’Reilly, 2004) and
D2 gene polymorphism studies (Frank, Doll, Oas-Terpstra, & Moreno, 2009;
Frank et al., 2007; Klein et al., 2007). We show later that incorporating the
changes of D2 dorsal-striatal receptors into the model not only maintains
the ability of the model in describing the addiction, but also enhances the
model to explain some surprising findings around addiction and Parkin-
sonism (Dagher & Robbins, 2009).

3 Results

3.1 Theory Outline. Here, we explain how our formulation, under cer-
tain conditions, can result in nonoptimal behavior, as in addicts. Mathe-
matically, the nonoptimal behavior is related to different learning rates of
the critic and the actor in the face of appetitive and aversive stimuli. In our
model, the learning rate for aversive learning in both critic and actor is α.
It means that the critic’s value and the actor’s preference are updated each
time by an equal amount, αδ, in the face of aversive stimuli. On the other
hand, while the learning rate for appetitive stimuli in the critic is ακc , the
learning rate for the actor is α, and so the critic’s value is updated by ακcδ,
whereas the actor’s preference is updated by αδ. These different learning
rates for appetitive stimuli in addition to equal learning rates for the aver-
sive stimuli have two important effects. The first is an obvious transitory
effect: the speed of learning for appetitive and aversive learning is differ-
ent. The second effect is a persistent bias that plays a prominent role in
emergence of nonoptimal behavior: the actor’s preferences are abnormally
exaggerated in the face of appetitive but not aversive stimuli.

It is notable that the difference between appetitive and aversive learning
rates in a temporal difference RL model (but not actor-critic) does not re-
sult in a permanent bias. Also, dissociating the learning rates of actor and
critic in the actor-critic model in which appetitive and aversive systems are
not dissociated does not result in persistent nonoptimal action selection; it
affects the speed of learning that can be resolved by enough exploration.
Indeed, both conditions are required for nonoptimal biased behavior to
emerge. Mathematically, the nonoptimal behavior appears if

Actor’s learning rate for appetitive stimuli (α)
Critic’s learning rate for appetitive stimuli (ακc)

�= Actor’s learning rate for aversive stimuli (α)
Critic’s learning rate for aversive stimuli (α)

.
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As explained earlier, in the light of our model, a vulnerable individual has
a reduced density of dopamine receptors in the NAc—κc < 1. Hence, for a
vulnerable individual, the left ratio is larger than the right one, and so the
selected actions are maladaptively biased toward appetitive stimuli.

Now assume a simple environment that consists of one state, s, where one
lever is available and the drug reward is obtained by the lever-press action,
a (see Figure 1a, Phase 1). In each time step, the model chooses between
action a and a no-reward action b (doing nothing). We want to investigate
the effects of drug on a vulnerable model, κc < 1. By pressing the lever,
the rat takes the drug, and the correspondingly high level of dopamine,
δ, is released according to equation 2.1. This abnormally higher prediction
error, δ, decreases κc by chronic drug use according to equations 2.8 and
2.9. This process will be launched only for susceptible individuals with an
abnormally lower density of NAc receptors. Furthermore, while the weight
of the value, wV(a ), is updated by ακcδ (see equation 2.7), the weight of
the preference, wP (a ), is updated by αδ (see equation 2.3). Due to the fact
that κc < 1, the preference for pressing the lever, P(a | s), grows more than
its value, V(s, a ). Because of the diminishing trend of κc , the preference
for taking the drug is progressively augmented by the development of
addiction. Since choosing b leads to no reward and no punishment, its
value, V(s, b), as well as its preference, P(b | s) remain zero.

Now assume that the drug reward is removed, and pressing the lever is
associated with an acute shock punishment, rsh � 0 (see Figure 1a, phase 2).
We now expect an intact model to choose the no-reward action, b, which is
much better than action a , which leads to the acute punishment. However,
this is not the case for a vulnerable model (see Figure 1b). Due to normal
learning of aversive stimuli in both critic and actor (see equations 2.2 and
2.3), for a vulnerable model, pressing the lever results in an equal decrease
in value and preference of action a , both equal to αδ. After a while, although
the value of this state action, V(s, a ), becomes negative, but because P(a |
s) � V(s, a ) before the advent of punishment, the preference for pressing
the lever remains positive, and thus P(a | s) > P(b | s) = 0. Hence, the lever
press action is chosen by the actor more than the no-reward action, even in
the face of aversive outcome. Through the course of learning, the prediction
error for the lever press converges to 0 (because V(s, a ) → rsh), and so the
actor’s preference for this action remains positive. Notably, because the
reward associated with b is 0, its value and preference are always 0.

In other words, although it is expected that an acute punishment will be
able to cancel out the rewarding consequences of drug taking and the deci-
sion maker to stop using drug, this is not how a vulnerable model behaves.
Despite the fact that the value of drug seeking is negative, the preference
for selecting drug remains positive. This discrepancy between the covert
value of drug seeking and the overt behavior of the individual is due to
the assumption that aversive and appetitive stimuli have an asymmetric
impact on action selection policy. For an aversive stimulus, because both
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Figure 1: (a) A vulnerable model with κc = 0.25 performs the task depicted
in phase 1. In state s, the model chooses between two actions. While action a
results in drug reward, rd = 10, action b results in no reward. After training
in this phase, the drug reward is substituted with a shock punishment, rsh =
−20(phase 2). (b) The performance of the vulnerable model in the environment.
While the optimal behavior in phase 2 is choosing action b, the vulnerable
model chooses action a in the face of punishment (because P(a | s) > P(b |
s) = 0). It is because the preference toward action a in phase 1 is exaggerated
in the actor, while it is normal in the critic. Since both value and preference
are updated by an equal amount in phase 2, as the figure shows, the amount
of drop in both critic’s value and actor’s preference is equal. While this drop
is sufficient for the critic’s value, V(s, a ), to converge to rsh , it is not enough
to make the preference, P(a | s), negative. Because the associated reward to
action b is 0, its value and preference always remain 0. Hence, in phase 2,
while the value of action a falls below the value of action b, the preference
toward action a is still above the preference of action b. When the critic’s value
converges to rsh , the prediction error by performing a converges to 0, and so no
change in the value and preference associated with a occurs. The parameters
of the simulation are detailed in the Supplementary Table 1, available online at
http://www.mitpressjournals.org/doi/suppl/10.1162/NECO a 00009.

http://www.mitpressjournals.org/doi/suppl/10.1162/NECO_a_00009
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value learning and preference adaptation are done using the same error
signal, they remain coupled during learning. However, the preference for
an appetitive stimulus grows more than its value. Hence, the punishment
cannot cancel out drug-seeking behavior even when an acute punishment
is substituted for the drug. It is also notable that the discrepancy between
the value and the preference increases progressively until the prediction
error becomes 0, and so the punishment that was previously able to can-
cel out pressing the level, is no longer able to stop drug taking after more
experience with the drug.

These explanations are demonstrated in the following sections through
simulating the model.

3.2 Compulsive Drug Seeking and Taking. There are some animal
models for assessing compulsive behavior (Deroche-Gamonet et al., 2004;
Vanderschuren & Everitt, 2004). We examine the behavior of the model in a
procedure analogous to one of them carried out by Deroche-Gamonet and
colleagues, which we refer to as Deroche-Gamonet’s task. Their experiment
has two stages. In the first stage, they used a self-administration procedure,
a common method in animal models of addiction. Rats learned to freely
obtain the drug by nose poking into a hole. In the second stage, the infusion
of drug was associated with a shock punishment. The shock was signaled
by a light stimulus that turned on with nose poking and off after shock
delivery.

To simulate Deroche-Gamonet’s task, we take into account an environ-
ment with two cues: a hole (that when available, the animal can obtain
reward by nose-poking) and a light stimulus. The simulation consists of
two steps. In the first step, the hole is available, but the light is not pre-
sented. The model can choose between nose poking and no action. Only by
choosing nose poking does the animal obtain the drug. In the second step,
the hole is available, and the light is presented. In this step, choosing nose
poking results in the delivery of a shock punishment. The magnitude of the
shock punishment is larger than the magnitude of the drug.

Results derived from simulating the model capture the essence of the be-
havioral observations mentioned above. Since the development of addiction
depends on both the duration of drug exposure and individual vulnerabil-
ity, we have decoupled these two influencing factors and examined them
in two separate simulations.

Figure 2a shows the effects of drug exposure on the development of
compulsive behavior. In this simulation, κc is initialized with a low value
in order to fulfill vulnerability prerequisite. As Figure 2a shows, shock
can suppress drug acquisition only after limited use. Figure 2b shows the
impacts of individual vulnerability on the development of addiction-like
behavior. As discussed in the preceding sections, vulnerability in our model
is defined by lower-than-normal levels of κc—κc < 1. Different initial values
of κc are simulated in Deroche-Gamonet’s task, where the time horizon of
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Figure 2: (a) The effect of duration of drug exposure on a vulnerable model
with κc = 0.5 in Deroche-Gamonet’s task. The performance of the model after
10, 40, and 100 trials of exposure to the drug in the face of shock punishment is
depicted. Only after limited use does shock suppress drug acquisition. (b) The
effect of individual vulnerability in Deroche-Gamonet’s task. Three models
with different κc self-administer drug equally (100 trials). The performance
of these models in the face of shock punishment is shown. The development
of compulsive behavior is inversely related to κc . That is, models with lower
levels of receptors are more vulnerable to development of compulsive behav-
ior. The parameters are detailed in Supplementary Table 2, available online at
http://www.mitpressjournals.org/doi/suppl/10.1162/NECO a 00009.

experiencing the drug in the training phase remains fixed. After the training
phase, the behavior of the model for each initial value of κc is evaluated.
Figure 2b shows that propensity to nose poking is inversely correlated with
the magnitude of κc . Only for the models with κc < 1 does the preference
for drug use outweigh its value. The lower the value of κc , the more the
preference for the drug will be exaggerated, and hence, it is expected that
low values of κc predict drug-seeking behavior, as shown in the figure.

3.3 Involvement of the Dorsal Striatum in Developing Addiction. A
wealth of evidence supports the hypothesis that the involvement of the

http://www.mitpressjournals.org/doi/suppl/10.1162/NECO_a_00009
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Figure 3: The value and preference associated with drug-seeking action in the
first stage of Deroche-Gamonet’s task for a vulnerable model with κc = 0.5.
The model self-administers a drug for 100 trials. The actor’s preference iden-
tifies propensity to drug use. The normalized value in the critic in the face
of normalized preference (habit) in the actor with drug self-administration is
depicted. The more experience with the drug, the more consolidated habit is
in the actor. Due to the increasing discrepancy between the critic’s value and
the actor’s preference, after long-term drug use, the critic is no longer able
to direct the actor toward an optimal decision. The involvement of the actor
in addiction is progressively augmented. The parameters are those used in the
previous simulation and are detailed in Supplementary Table 2, available online
at http://www.mitpressjournals.org/doi/suppl/10.1162/NECO a 00009.

dorsal striatum is progressively augmented by the development of addic-
tion. Since in our model the actor plays the role of the dorsal striatum, we
evaluate the actor’s preferences when the model self-administers the drug.

Assume a simple environment where the model takes drugs by pressing
a lever. κc is initialized with a relatively low value in order to fulfill the vul-
nerability prerequisite. We assess the values and preferences for drug taking
during the time of drug use. As Figure 3 shows, preference toward taking
drugs is abnormally consolidated after chronic consumption of drugs by
vulnerable individuals. Indeed, a punishment that was previously able to
suppress drug seeking can no longer cancel out the drug-seeking habit.
Hence, the involvement of the actor that models the dorsal striatal function
is progressively augmented. In fact, through the development of addiction,
the discrepancy between the value and the preference progressively in-
creases, and so, by giving a punishment, the prediction error calculated by
the critic is no longer able to direct the actor toward the optimal decision.
This is because the maladaptive habit is consolidated abnormally in the ac-
tor. This behavior of the model is consistent with evidence showing that the
dorsal striatum plays a critical role in habitual and compulsive drug seek-
ing (Everitt & Robbins, 2005), and studies have shown that the metabolic
activity of dorsal domains of striatum is progressively augmented (Porrino
et al., 2004).

http://www.mitpressjournals.org/doi/suppl/10.1162/NECO_a_00009
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Two points are notable. First, although the actor’s habitual response is
abnormally consolidated toward taking the drug, it is the critic’s deficit
that is the source of this abnormal behavior. At the neural level, the model
predicts that although the dorsal striatum plays the prominent role in mal-
adaptive response, it is the NAc deficit that consolidates this maladaptive
behavior. Second, only chronic, not acute, exposure to drugs increases the
actor’s preference. This is because the effects of the drug on κc appear only
after chronic drug consumption.

3.4 Food Addiction and Pathological Gambling. Some studies have
demonstrated that there is a common mechanism at least partly underlying
obesity and addiction (Volkow et al., 2008; Volkow & Wise, 2005) and also
pathological gambling and addiction (Potenza, 2008). For example, the role
of the dopaminergic reward circuit in these diseases is prominent, and all of
them occur in individuals with similar vulnerabilities in dopamine recep-
tors (Steeves et al., 2009; Volkow et al., 2008). Regarding that all behaviors of
the model depend on only high dopamine release in the NAc of a vulnerable
individual (i.e., an individual with low availability of dopamine receptors
in the NAc), the model can explain addiction-like behavior for foods or
gambling, both of which, naturally produce dopamine in the striatum. In-
deed, the euphoria produced by sex, food, or gambling makes them highly
rewarding, and they produce a relatively high dopamine signal that can
diminish the availability of NAc dopamine receptors, κc , in the vulnerable
individual. Hence, although these rewards have no pharmacological effect,
they can lead to an imbalance between learning the appetitive and aver-
sive consequences of stimuli and lead vulnerable individuals to compulsive
behavior.

The model thus predicts that experiencing addiction to any of these
reinforcers will make the individual more vulnerable to addiction to the
others. This is due to the diminishing effect of the first addiction-induced
reinforcer on κc .

3.5 Parkinsonism and Its Relation to Addiction. Parkinson’s disease
(PD) is associated with a deficit in dorsal striatal dopamine and its dopamine
afferents projecting from SNc. Although PD is known as a movement dis-
order, patients have some deficits in cognitive functions, especially those
related to learning from appetitive and aversive outcomes. Importantly,
PD patients display enhanced harm-avoidance behavior, that is, enhanced
ability to avoid negative a outcome (Frank et al., 2004). One medication
for these patients is D2 agonist, which improves the ability of patients to
learn from positive outcomes, although it surprisingly exacerbates the per-
formance in some tasks that require learning from negative outcome (Frank
et al., 2004). Another puzzling observation is that while nonmedicated PD
patients show fewer tendencies for smoking cigarettes or other forms of
addiction such as pathological gambling, after medication with D2 agonist,
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a subpopulation of them had an incidence of pathological gambling as high
as 8%. This is surprising because evidence shows less than 1% of patho-
logical gambling in general population (Dagher & Robbins, 2009). In this
section, generalizing our approach in modeling NAc dopamine receptors
to dorsal striatal receptors, we seek to explain the puzzling relationship
between PD and addictive behaviors.

Frank and colleagues have hypothesized that D1 and D2 receptors play
distinctive roles in learning from positive and negative outcomes, especially
in more dorsal regions (Frank et al., 2004; Hazy et al., 2007). According to
this hypothesis, D1 and D2 receptors are involved in learning from posi-
tive and negative prediction error, respectively. We symbolize the effect of
D1 by κ+

a , and D2 by κ−
a . Similar to our approach in modeling the effects

of receptors in the NAc (critic), we model receptors in the dorsal striatum
(actor) as modulators of learning rate. We assume that the learning rate in
the actor is ακ+

a and ακ−
a for positive and negative prediction error, respec-

tively. In other words, taking into account the effects of dorsal receptors, the
actor’s preferences are updated by ακ+

a δ and ακ−
a δ for positive and negative

feedback, respectively. Since PD is associated with a deficit in dorsal striatal
dopamine system, we model PD by deficits in the actor. Here, in line with
Frank and colleagues (Frank et al., 2007), we assume that off-medication
PD patients have higher learning rates from negative outcomes compared
to positive outcomes, that is, κ−

a > 1. Due to κ−
a > 1, the avoidance from

negative outcomes is exaggerated in the actor during leaning.
This approach in modeling can explain why a Parkinsonian personality

contrasts with an addiction personality in terms of balancing appetitive
and aversive aspects of reinforcers. Assume a PD patient model (in which
κ−

a > 1) performs the task mentioned in Figure 1a. In the first phase, the
value of pressing lever changes from 0 to the value of drug reward, rd , and
so the prediction error is always positive. In this phase, the critic’s value
for drug seeking is updated by κcδ, and the actor’s preference is updated
by κ+

a δ. Since κc = κ+
a = 1, both the critic’s value and the actor’s preference

for lever pressing converge to rd . In the second phase, when a punishment
rsh , is substituted for the reward, rsh , the value of drug seeking changes
from rd to rsh , and so the prediction error is negative during this phase
of learning. Hence, while the value of lever pressing is updated by αδ,
the actor’s preference for this action is updated by ακ−

a δ. Since κ−
a > 1, the

avoidance exaggerates in the actor compared to the critic.
Consequently, we expect that PD patients, do not tend to different forms

of addiction, because in these patients a negative outcome in the actor is
exaggerated. This tendency broadly contrasts with the characteristic of in-
dividuals with a tendency to addiction: whereas Parkinsonism exaggerates
negative outcomes in the actor, addiction vulnerability exaggerates appet-
itive outcomes. This explains why PD patients have a lower tendency to
addiction-like behaviors (Dagher & Robbins, 2009).
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Now we model the effect of D2 agonist, which is a medication for PD. In
line with Frank et al. (2004, 2007), we assume that D2 agonist medication
decreases the learning rate from a negative outcome in the dorsal striatum,
κ−

a . On the other hand, by stimulation of D2 receptors in the NAc, the sub-
sequent dopamine release in this region increases. Hence, for PD patients
with a comorbidity of addiction (κc < 1), the increase in dopamine release
results in a reduction of dopamine receptors according to equations 2.8 and
2.9. Therefore, the medication not only reduces the avoidance form of neg-
ative outcome in the actor but also enhances a preference toward appetitive
stimuli in PD patients with a comorbidity for addiction. This may explain
why pathological gambling in PD patients medicated with a D2 agonist is
reported to be higher than the general population. Indeed, this observa-
tion can be related to a reduction of κc in PD patients even with a limited
vulnerability for addiction, which have κc slightly less than 1. According
to equation 2.8, for such a vulnerable individual, a very high dopamine
release is needed to reduce κc that might not be produced by gambling.
Nonetheless, D2 agonist medication can reduce κc , and so a previously less
vulnerable individual becomes highly vulnerable to the development of
addiction.

After stopping treatment with a D2 agonist, the availability of D2 re-
ceptors in the NAc and the dorsal striatum returns to its initial levels, and
thus the symptoms of addiction disappear. However, because levodopa is
a drug that increases dopamine in striatum, equations 2.8 and 2.9 do not al-
low the dopamine receptors to recover, and so, by reducing D2 agonist dose
contaminant with an increase in levodopa dose, the addictive symptoms
persist.

It worth mentioning that although a negative outcome (δ < 0) and aver-
sive stimuli are different (r < 0) in nature, most tasks in the literature on PD
that investigates deficit in learning are not able to discriminate these two
different conditions. Further studies are needed to determine that a distinc-
tion reported in learning from positive versus negative prediction error is
actually related to the prediction error itself or the valence of the stimuli
(but see Frank et al., 2009; Moustafa, Cohen, Sherman, & Frank, 2008; Pe-
terson et al., 2009). Importantly, Matsumoto and Hikosaka in a nonhuman
primate study have reported that some SNc dopamine neurons excite by
punishment-predicting stimuli (Matsumoto & Hikosaka, 2009; but see also
Frank & Surmeier, 2009).

In the light of our model, a higher learning rate for appetitive stimuli in
the critic in the face of other normal learning rates leads to behaviors similar
to PD patients’ behaviors. It is because the actual value of an appetitive
stimulus will be attenuated in the actor. Hence, the model predicts a lower
tendency to addiction-like behavior for any pathology that includes a higher
level of both D1 and D2 dopamine receptors in the NAc but a normal level
of dopamine receptors in the dorsal striatum.
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4 Discussion

We proposed a computational framework for the hypothesis that individ-
ual differences in the NAc dopamine receptors predispose addiction-like
behavior. The proposed model explains and simulates the compulsive be-
havior as a function of two factors: individual vulnerability and duration of
drug exposure. We computationally elucidated how possibly the involve-
ment of the dorsal striatum is progressively augmented and why abnormal
habitual drug seeking and drug taking mainly depend on the dorsal stria-
tum. The model proposes a common framework for describing addiction to
natural rewards and addictive drugs. Finally, the proposed model explains
how PD medication with D2 agonists might trigger pathological gambling,
as well as other forms of addiction.

4.1 Individual Differences and Computational Models of Addiction.
Previously, individual susceptibility to drug addiction was not addressed
explicitly by abstract computational (Dayan, 2009; Dezfouli et al., 2009;
Redish, 2004; Redish et al., 2007; Redish & Johnson, 2007; Zhang et al., 2009)
or multilevel circuit models of addiction (Gutkin et al., 2006). Although
the development of addiction in the previous models did not depend on
individual differences systematically, we and others assumed that the free
parameters of models can be different across individuals and this can lead
to different patterns for the development of addiction. Our approach here
is consistent with those studies; the parameter here is the learning rate.
However, we have shown how the development of addiction can depend
on this parameter. Moreover, we made a clear link between neural evidence
and the parameter-mediated addiction in the proposed model.

Among the previous models, our approach has some similarities to that
proposed by Gutkin and colleagues (2006), which is a neuronal network
dynamical model for nicotine addiction. The important similarity is that
both models explain addiction by interpreting the effect of drug on learn-
ing rates. In their model, a slow opponent process plays a critical role in
drug addiction. It is assumed that a dopamine signal governs the gating
of memory. On the other hand, long-term exposure to nicotine causes the
dopamine signal to fall below a certain threshold needed for efficient learn-
ing. The model explains decreased harm avoidance based on an impaired
learning mechanism. After long-term drug abuse, the model is unable to
learn that drug seeking and taking is followed by harmful consequences.
Considering the behavior of the model, it learns a nondrug reinforcer more
slowly after long-term drug consumption, but after being learned, the be-
havior of the model does not differ from what it was before the chronic
drug abuse. Compared to our model, it is more concrete and explains the
process at a neuronal level. Nevertheless, although we model the effects of
drugs on the critic’s learning rate for appetitive stimuli, the results do not
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depend on the slow learning speed; they depend instead on the imbalance
between learning rates for appetitive and aversive stimuli in the critic.

It is also important to note that the lower availability of NAc dopamine
receptors seems not to be the sole reason that individuals become sus-
ceptible to addiction; our proposed framework—the imbalance between
appetitive and aversive learning in the critic and the actor—is not the only
way to addiction. As explained in section 1, the interaction of drug and
dopaminergic circuitry is multidimensional. The effects of drugs on other
components of dopaminergic circuitry, such as phasic dopamine, can also
lead to addiction (Dezfouli et al., 2009; Redish, 2004). Notably, the effects of
drugs are not only restricted to the dopamine circuit (Ahmed, 2004); addic-
tion can be the result of vulnerabilities in different subsystems involved in
the decision process (Redish et al., 2008).

4.2 The Model Predicts Accelerated Habit Formation After Long-Term
Drug Use. A clear prediction of the model is that drug use accelerates habit
formation in instrumental tasks. In other words, by long-term drug abuse,
due to the diminishing trend of κc , the discrepancy between the value of
and the preference for obtaining rewards increases, even for stimuli that
are not able to decrease dopamine receptors. Therefore, by substituting the
reward with punishment (devaluation), due to the abnormal consolidated
habit-like responses in the actor, the model continues to seek the natural
reward for a longer-than-expected period. This prediction is in harmony
with studies showing that animals exposed to cocaine exhibit more rigid
and inflexible behavior than control animals when the predicted food is
devalued (Nelson & Killcross, 2006; Schoenbaum & Setlow, 2005) or after
reversal (Jentsch, Olausson, De La Garza, & Taylor, 2002; Schoenbaum,
Saddoris, Ramus, Shaham, & Setlow, 2004; Takahashi, Roesch, Stalnaker, &
Schoenbaum, 2007; Takahashi et al., 2008).

4.3 The First Leg of the Spiral Plays the Most Important Role in Our
Model. Recent studies have revealed the importance of striatal-midbrain
spiraling network in connecting ventral regions of the striatum to the dorsal
regions. This network consists of a cascading serial connectivity that links
the NAc shell to the more posterior VTA, which then projects to the NAc
core and also to more dorsal regions of striatal organization, which in turn
projects to SNc, and so on (Haber, Fudge, & McFarland, 2000; Ikemoto,
2007). Using an intrastriatal disconnection procedure, it has been shown that
the striato-midbrain-striatal serial dopaminergic connectivity is essential for
enhancing drug-seeking habits (Belin & Everitt, 2008). Our model reveals
the importance of the two legs of this spiral computationally: posteromedial
VTA to NAc shell and SNc to dorsal striatal projections.

Studies suggest a pivotal role for synaptic plasticity in the VTA that
appears just 4 hours after a single exposure to cocaine and initiates plas-
ticity in the NAc (Kauer & Malenka, 2007). Anatomically, this initiation
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can be attributed to the first leg of the spiral. Our model reveals that the
involvement of the first leg of the spiral in response to rewarding stimuli
is important to initiate plasticity in the NAc. Hence, we suggest that early
adaptations in the VTA might include increased sensitivity of its dopamine
neurons to rewarding stimuli, and this hypersensitivity initiates adapta-
tions in the NAc. In other words, due to the earlier actions of the drug on
the VTA, more neurons in the VTA respond to appetitive but not aversive
stimuli. This suggestion reveals the importance of studies that measure the
responsiveness of the VTA dopamine neurons to rewarding stimuli in pre-
and post-drug-taking phases. The first target for such studies can be the
dopamine neurons that are excited by aversive stimuli and neurons that do
not excite or inhibit by aversive stimuli (unresponsive neurons) (Brischoux,
Chakraborty, Brierley, & Ungless, 2009).

4.4 Modeling Other Limbic Structures Is the Next Step to Complete the
Proposed Model. The adaptations in the VTA can be mediated by mGluR1
receptors on the dopamine neurons (Mameli et al., 2009). The glutamater-
gic plasticity in the dopamine system is of great importance according to a
wealth of evidence demonstrating that glutamatergic progression plays a
critical role in reducing the ability of the brain’s limbic structures to control
behavior. This loss of control comes with overcoming the motor structures,
such as the dorsal striatum and SNc, on the limbic structures, such as the
PFC, the NAc, and the VTA (Kalivas, 2009). Nevertheless, modeling the neu-
roadaptations in the connections between PFC and NAc requires a compu-
tational key that normally mediates behavioral shift, which is important in
particular for modeling relapse (Kalivas & O’Brien, 2008; Redish et al., 2007)
and craving (Conrad et al., 2008; Redish & Johnson, 2007). Bayesian uncer-
tainty of values estimated by these systems has been proposed as the com-
putational key to switch behavior from goal-directed action to habitual re-
sponse (Daw, Niv, & Dayan, 2005). At the neural level, the dopamine system
and its interaction with the glutamate system might play an important role
in behavioral shifting. Consistently, it has been shown that a gene in the PFC
controlling prefrontal dopamine function is associated with uncertainty-
based exploration (Frank et al., 2009). Also, D1 and D2 receptors in the NAc
affect different facets of goal-directed behavior by modulating selectively
synaptic input from hippocampus and medial PFC (Goto & Grace, 2005).

On the other hand, it seems that OFC, as a part of PFC, plays an im-
portant role in different phases of addiction. Since it is hypothesized that
OFC encodes the incentive value of different choices (Schoenbaum, Roesch,
Stalnaker, & Takahashi, 2009), modeling the role of this region can be the
next step in advancing computational models of addiction. Specifically, it
seems that OFC and its connection with NAc play an important role in
impulsive behavior, which has a direct correlation with the tendency to
use drugs (Roesch, Takahashi, Gugsa, Bissonette, & Schoenbaum, 2007).
For example, a low density of D2 receptors in the NAc correlates with
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impulsive behavior and impulsivity in turn predates compulsivity in rats
(Belin et al., 2008; Dalley et al., 2007). Therefore, explanation of reported
pre- and postdrug impulsivity in vulnerable individuals is an important
feature of addiction that future models can focus on.
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