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Chapter 8
Understanding Addiction as a Pathological State
of Multiple Decision Making Processes:
A Neurocomputational Perspective

Mehdi Keramati, Amir Dezfouli, and Payam Piray

Abstract Theories of addiction in neuropsychology increasingly define addiction
as a progressive subversion, by drugs, of the learning processes by which animals
are equipped with, to adapt their behaviors to the ever-changing environment sur-
rounding them. These normal learning processes, known as Pavlovian, habitual and
goal-directed, are shown to rely on parallel and segregated cortico-striatal loops,
and several computational models have been proposed in the reinforcement learning
framework to explain the different and sometimes overlapping components of this
network. In this chapter, we review some neurocomputational models of addiction
originating from reinforcement learning theory, each of which explain addiction as a
usurpation of one of the well-known models under the effect of addictive drugs. We
try to show how each of these partially complete models can explain some behav-
ioral and neurobiological aspects of addiction, and why it is necessary to integrate
these models in order to have a more complete computational account for addiction.

8.1 Introduction

Addiction, including addiction to drugs of abuse, is defined as a compulsive ori-
entation toward some certain behaviors, despite the heavy costs that might be
followed (Koob and Le Moal 2005b). In the case of drug addiction, addicts are
usually portrayed as people who seek and take drugs, even at the cost of ad-
verse social, occupational and health consequences. Although a wide range of
effects of drugs on different body and nervous system regions has been shown,
it is progressively becoming accepted that the above definition of drug addic-
tion arises from the pharmacological effects of drugs on the brain learning sys-
tem, that is, the brain circuits involved in adaptively guiding animals’ behav-
iors toward satisfying their needs (Everitt and Robbins 2005; Redish et al. 2008;
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Belin et al. 2009). In fact, drugs of abuse are notorious for usurpation of the natural
learning processes and consequently, understanding normal learning mechanisms
has proven to be a prerequisite for understanding addiction as a pathological state
of those underlying systems.

Conditioning literature in behavioral psychology has long studied animal behav-
ior and has developed a rich and coherent framework for understanding associa-
tive learning by defining several components involved in decision making, most no-
tably Pavlovian, habitual, and goal-directed systems (Dickinson and Balleine 2002).
The neural underpinnings of these components and their competitive and collabo-
rative interactions have also been well studied during the last 50 years (Balleine
and O’Doherty 2010; Rangel et al. 2008), although there is still a long way to go.
This psychological and neurobiological knowledge has paved the way for com-
putational models of decision making to emerge. These models rephrase in a for-
mal language, the developed concepts in the neuropsychology of decision making
and thus, guarantee the coherency and self-consistency of the proposed compu-
tational theories, as well as quantitatively examining their validity using experi-
mental data. The computational theory of reinforcement learning (RL) (Sutton and
Barto 1998), which is the origin of all computational models reviewed in this chap-
ter, is a putative formal framework that has captured many aspects of the psycho-
logical and neurobiological knowledge gathered around animal decision making.
Within this framework, the “Q-learning” model explains the behavioral charac-
teristics of the habitual process (Sutton and Barto 1998), which is believed to be
neurally implemented in the sensorimotor cortico-striatal loop (Yin et al. 2004,
2008). The “actor-critic” models, on the other hand, explain collaboration between
Pavlovian and habitual systems and are based on the integrity of limbic and sen-
sorimotor loops (Joel et al. 2002). Finally, “dual-process” models, capture the in-
terplay between habitual and goal-directed processes, and are based on the inter-
action between sensorimotor and associative loops, respectively (Daw et al. 2005;
Keramati et al. submitted).

As addictive drugs are known to usurp the normal learning mechanisms, many of
the computational models proposed to date for explaining addiction-like behaviors
are based on the RL framework. In fact, each of the five computational models
reviewed in this chapter (Redish 2004; Dezfouli et al. 2009; Dayan 2009; Piray
et al. 2010; Keramati et al. submitted) explains addiction as a malfunction, due to
the effect of drugs, of one of the variants of the RL theory mentioned above. As
each model takes into account different, and sometimes overlapping components of
the whole learning system, each of them can explain some limited, and sometimes
overlapping, behavioral aspects of addiction.

In the following sections, we first briefly discuss some key concepts of the con-
ditioning literature and its neural substrates. The main focus of the first section is on
introducing Pavlovian and instrumental forms of associative learning and the mul-
tiple kinds of interaction between them, as well as the anatomically parallel and
segregated closed loops in the cortico-basal ganglia system that underlie those dif-
ferent associative structures. Based on this literature, potential impairments in these
systems induced by pharmacological effects of drugs, and their related behavioral
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manifestations are explored in the next section. We then review five computational
models of addiction, each of which has incorporated the pharmacological effects
of drugs into a version of the computational theory of reinforcement learning. The
first two models (Redish 2004; Dezfouli et al. 2009) are based on the Q-learning al-
gorithm, which models the habitual decision making process. The second group of
models (Dayan 2009; Piray et al. 2010) study the drug-induced pathological state of
the actor-critic model, representing the interaction between Pavlovian and habitual
process. And the last model (Keramati et al. submitted) relies on the dual-process
theory of decision making. Finally, we discuss some open avenues for future theo-
retical efforts for explaining more behavioral and biological evidence on addiction
in the RL framework.

8.2 Normal Decision Making Mechanism

Conditioning is an associative learning process by which animals learn to adapt
their predictions and behaviors to the occurrence of different stimuli in the envi-
ronment (Dickinson and Balleine 2002). This learning is made possible by repre-
senting the contingencies between different stimuli, responses, and outcomes, in
brain associative structures. Psychologists have long made a distinction between
Pavlovian and instrumental forms of conditioning. Pavlovian (or classical) condi-
tioning is a form of associative learning where the animal learns that presentation of
a neutral stimulus, known as conditioned stimulus (CS), predicts the occurrence of a
salient event, known as unconditioned stimuli (US). For this reason, Pavlovian con-
ditioning is also known as stimulus-stimulus (S-S) conditioning. Appearance of the
US might evoke an innate, reflexive response called unconditioned response (UR).
When this reflexive response is evoked by presenting the CS (which itself predicts
the US), it is called a conditioned response (CR). Salivation in response to presen-
tation or prediction of food is a famous example of conditioned or unconditioned
responses, respectively. It is important to note that in Pavlovian conditioning, the
animal has no control over the occurrence of events in the environment, but only
observes. A computational model for learning these S-S associations is presented in
Sect. 8.4.2.

In instrumental conditioning, in contrast, the animal learns to choose a sequence
of actions so as to attain appetitive stimuli or to avoid aversive ones. At the early
stages of exploring a new environment, the animal starts discovering the causal re-
lations between specific actions and their consequent biologically significant out-
comes. Based on this instrumental knowledge, at each state like s, the animal delib-
erates the consequences of different behavioral strategies and then, takes an action
like a by which it reaches a desirable outcome like o. Regarding that this kind of
instrumental behavior is aimed at gaining access to a certain outcome or goal, it
is called goal-directed or stimulus-action-outcome (S-A-O) responding. A formal
representation for this system is presented in Sect. 8.4.3. After the animal is ex-
tensively trained in the environment, it learns to habitually make a certain response,
say a, whenever it finds itself in a certain state, like s, without considering the poten-
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tial consequences that action might have. Not surprisingly, this type of instrumental
behavior is called habitual or stimulus-response (S-R) responding. A computational
model representing this type of learning is introduced in Sect. 8.4.1.

Although the three types of learning mechanisms (S-S, S-A-O, S-R) are defined
operationally independent from each other, they both collaborate and compete to
produce appropriate behavior. The S-S system mainly interacts with the S-R system
(Yin and Knowlton 2006; Holland 2004). Conditioned reinforcement phenomenon
and Pavlovian-to-instrumental transfer (PIT) are two demonstrations of this inter-
action, both playing a critical role in addiction to drugs. Conditioned reinforcement
refers to the ability of a CS (e.g., a light associated with food) in gaining reward-
ing properties in order to support the acquisition of a new instrumental response
(pressing a lever in order to turn the light on) (Mackintosh 1974). Actor-critic mod-
els, explained in Sect. 8.4.2 are proposed to model such an interaction between
the two systems (but see Dayan and Balleine 2002). PIT, on the other hand, is a
behavioral phenomenon in which non-contingent presentation of a CS markedly el-
evates responding for an outcome (Lovibond 1983; Estes 1948). Although PIT is
suggested to play an important role in addictive behaviors, the computational ac-
counts for the role of this phenomenon in addiction are still not well developed,
and thus we do not discuss them in this chapter (see Dayan and Balleine 2002;
Niv 2007 for computational models of PIT).

The so far studied interactions between the S-R and S-A-O systems, on the
other hand, mainly focus on the competition between these two systems; i.e. these
two systems compete for taking the control of behavior. As noted earlier, it has
been demonstrated that at the early stages of learning, the behavior is governed
by the S-A-O system, whereas extensive learning results in the S-R system win-
ning the competition. The dual process models introduced in Sect. 8.4.3 are de-
veloped to model this interaction, and explain how drug-induced imbalance in the
interaction between S-R and S-A-O systems can contribute to addictive behav-
iors.

The three different decision making processes discussed above are demonstrated
to depend on topographically segregated, parallel cortico-striato-pallido-thalamo-
cortical closed loops (Alexander et al. 1986, 1990; Alexander and Crutcher 1990).
These loops include limbic, associative and sensory-motor loops, which are shown
to mediate Pavlovian, goal-directed and habitual processes, respectively. Striatum
is a central structure in this system, though it should be viewed as only a part
of a bigger network. It receives glutamatergic projections from cortex, as well as
dopaminergic inputs from Ventral Tegmental Area (VTA) and Substantia Nigra Pars
Compacts (SNc). The striatum can be divided into anatomically and functionally
heterogeneous subregions. Classically, the ventral subregion is shown to mediate
Pavlovian conditioning, whereas the dorsal region is involved in instrumental con-
ditioning (O’Doherty et al. 2004; Yin et al. 2008). Within the dorsal striatum, dorso-
lateral part and dorsomedial are demonstrated to mediate habitual and goal-directed
processes, respectively (Yin et al. 2004, 2005, 2008).
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8.3 Aspects of Addictive Behavior

In the general system-level framework within which the computational models of
addiction are discussed in this chapter, three criteria for evaluating each model can
be proposed. Each criterion is, in fact, a set of theories on which a system-level
model of addiction is expected to be based on. Satisfying each of these criteria
can improve either the behavioral explanatory power or relevancy to neurobiolog-
ical reality of the corresponding model. These three criteria are: (1) being based
on a model for the normal decision-making system, at both neurobiological and
behavioral levels; (2) incorporating the pharmacological effects of drugs on neural
systems into the structure of the computational model; and (3) explaining a set of
well-known behavioral syndromes of drug addiction. In the previous section, we
provided a conceptual framework for the normal decision-making system (basis 1),
which will be later used as a basis for the addiction models introduced in this chap-
ter. In this section, we focus on the third basis, and discuss some important behav-
ioral aspects of drug addiction. Discussing the second basis is postponed until the
description of computational models in Sect. 8.4.

8.3.1 Compulsive Drug Seeking and Taking

According to the current Diagnostic and Statistical Manual of Mental Disorders
(American Psychiatric Association 2000, p. 198) “The essential feature of sub-
stance abuse is a maladaptive pattern of substance use manifested by recurrent
and significant adverse consequences related to the repeated use of substances.
. . . There may be repeated failure to fulfill major role obligations, repeated use in
situations in which it is physically hazardous, multiple legal problems, and recurrent
social and interpersonal problems.” In other words, the fundamental characteristic
of drug addiction is that the consumption of drug doesn’t decrease proportionally
when its costs (health costs, social costs, financial costs, etc.) increase. In behav-
ioral economic terms, this type of behavior is referred to as inelastic consumption,
as opposed to elastic consumption where decreases in demand are significant when
price increases. In accordance with this feature, studies looking at the sensitivity
of drug consumption to its price, demonstrate that the consumption of cigarettes
and heroin among dependent individuals is less elastic (or sensitive) to price,
compared to other reinforcers (Petry and Bickel 1998; Bickel and Madden 1999;
Jacobs and Bickel 1999). Figure 8.1 presents a simplified environment for compu-
tationally investigating the sensitivity of the consumption of drugs to the associated
costs (e.g., price). A decision maker (model) has two options: (a) to do nothing (C1),
which leads to the delivery of no reinforcer, and (b) to pay the cost of the drug (C2),
and then receive the drug reinforcer. The relative inelasticity of demand for drugs
implies that the probability of selecting the second option (punishment-then-drug)
by the model should be insensitive to the cost, as compared to a situation where the
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Fig. 8.1 The model has to
choose between C1 which
brings no reward, and C2.
Choosing C2 is followed by a
cost, and then a drug reward

model receives a natural reinforcer instead of the drug (punishment-then-natural-
reinforcer). This procedure is used to study the behavior of the model proposed in
Sect. 8.4.1.

The compulsive nature of drug-seeking behavior in addicts is tried to be captured
in animal models of addiction in various ways. In a variation of such experiments,
rats are trained to respond on a seeking lever in order to get access to a taking lever,
on which responding leads to the drug. Here, drug seeking and taking are sepa-
rate actions. In the test phase, seeking responses are measured in the presence of
a punishment-paired CS. In fact, during the test phase, the animal doesn’t receive
punishment nor drugs. Thus, its behavior is measured when no new training is pro-
vided and the animal should choose whether to continue going for the drug in the
new condition or not (Vanderschuren and Everitt 2004). The formal representation
of the procedure is similar to the one in Fig. 8.1: the animal can attenuate aversive-
ness of the expected electric shock by freezing (C1), or alternatively, it can press the
seeking lever in order to get access to the drug (C2).

As another attempt to capture compulsivity in animal models, a CS is paired
with an electric shock (electric shock plays the role of the cost associated with the
drug) during the training phase. In the test phase, if the rat chooses to press the lever
while the CS is present, it will receive the electric shock, which is then followed
by the delivery of the drug (Deroche-Gamonet et al. 2004; Belin et al. 2008). This
procedure is used to examine the behavior of the model proposed in Sect. 8.4.2.2
(a formal representation of the schedule is also provided there). In another exper-
iment (Pelloux et al. 2007), half of the responses (i.e., lever presses) are followed
by punishment (and not drug delivery), whereas the other half are followed by drug
delivery (and not punishment). From an animal learning point of view, the benefit
of this paradigm is that unlike the previous one, the assertiveness of the punishment
will not attenuate through its association with the reward (see Pelloux et al. 2007
for more explanation). However, the exact difference between this paradigm and the
previous ones from a modeling and behavioral economic point of view needs further
investigation.

Intuitively, all the mentioned experiments are to investigate the degree to which
the consumption of drugs is sensitive to the associated costs. However, the question
of what degree of insensitivity to costs should be regarded as compulsive behavior is
still unanswered. At least three types of criteria are used to distinguish between com-
pulsive and non-compulsive drug seeking behavior: (1) Comparing the sensitivity of
drug consumption to costs, with the sensitivity of the consumption of natural rein-
forcers (e.g., sucrose) to costs. Here, the experiments indicate that compared to nat-
ural rewards, drug consumption is less sensitive to punishments (Pelloux et al. 2007;
Vanderschuren and Everitt 2004); (2) Comparing the behavior of different subpopu-
lations of drug-exposed animals. In such experiments, animals are first divided into
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groups based on a criterion like the degree of impulsivity, the degree of reactivity to
novelty (Belin et al. 2008), or based on results of a test for reinstatement (Deroche-
Gamonet et al. 2004). Next, the sensitivity of responses to a punishment is measured
and compared between groups, and the group with the lowest sensitivity is consid-
ered to be compulsive. In this paradigm, individuals that exhibit compulsive behav-
ior are considered as vulnerable individuals; and (3) Comparing the behavior of an-
imals exposed to drug in different conditions and schedules of drug reinforcement.
Here, the main finding is that the inelasticity in drug consumption progressively in-
creases as the history of drug consumption increases. In fact, drug consumption be-
comes compulsive after a long-term drug exposure (Deroche-Gamonet et al. 2004;
Pelloux et al. 2007; Vanderschuren and Everitt 2004).

In conclusion, appearance of compulsive behavior is a function of two indepen-
dent factors: the degree of drug exposure (criterion 3) and the degree of vulnerability
of the individual exposed to drug (criterion 2). This implies that, the more vulnera-
ble the animal is, or the longer the period of exposure to the drug is, the insensitivity
of drug consumption to punishments must increase, compared to a natural reward
(criterion 1).

8.3.2 Impulsivity

Impulsivity is one of the behavioral traits that is closely related to addiction. Addicts
are generally characterized as impulsive individuals. They usually exhibit deficiency
in response inhibition when it is necessary for reward acquisition, even in non-drug-
related tasks. Impulsivity is a multidimensional construct, though two aspects of
it seem to be more important: impulsive choice and impaired inhibition. Formal
modeling and simulation of situations measuring impulsive choice is rather straight-
forward (see below). However, modeling an environment for assessment of impaired
inhibition (i.e., inability to inhibit maladaptive behaviors) is hard to achieve, and
to our knowledge, there is no computational study on impaired inhibition. Thus,
hereafter, we focus on the impulsive choice aspect and refer to it as impulsivity.

Impulsivity is defined as the selection of a small immediate reward over a de-
layed larger one. Figure 8.2 illustrates an environment for the delay discounting
task, which is commonly used for the assessment of impulsive behavior. As the fig-
ure shows, the model has two choices: one (C1) leads to an immediate small reward,
Rs , and the other (C2) leads to a delayed (k time steps), but larger reward, Rl . In this
environment, the impulsive individuals are those that have more tendency to small
rewards, compared to other individuals. A wealth of evidence in human subjects
suggests that drug-dependent individuals have more tendency to the small-reward
choice, compared to non-dependent individuals (see Bickel and Marsch 2001;
Reynolds 2006 for a review). In the same line, animal models report that chronic
drug intake causes impulsive choice in rats, as they show less ability to delay grati-
fication compared to control rats (Simon et al. 2007; Paine et al. 2003).
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Fig. 8.2 Delay discounting task. The model has two choices, C1 and C2. Selection of C1 leads to
a small reward, Rs , only after one time step, whereas by choosing C2, the model should wait for k
time steps, and a large reward, Rl , will be delivered afterwards

It is still unclear whether this increased impulsivity in drug-dependent individuals
is a determinant or only a consequence of drug use. However, in human, using self-
report measures of impulsivity, it has been reported that youth with impulsive traits
are more likely to initiate drug use (see de Wit 2009 for a review). In animals, high
impulsivity measured by lack of behavioral inhibition predicts transition to compul-
sive behavior (Belin et al. 2008). Accordingly, it can be expected from a model of
addiction that the more impulsive the model is (as measured by impaired inhibition),
the more vulnerable it should be to develop compulsive drug-seeking. However, for
concluding that choice impulsivity is also an indicator of vulnerability to develop
compulsivity, there should at least be a strong correlation between these two mea-
sures of impulsivity. Although it is reported in some studies that impaired inhibition
is significantly correlated with impulsivity measured in the delay discounting task
(Robinson et al. 2009), other evidence suggest that these two behavioral constructs
are not necessarily overlapping (de Wit 2009). Thus, for establishment of links be-
tween choice impulsivity and compulsivity, further computational works are needed
on modeling impaired inhibition forms of impulsivity.

8.3.3 Relapse

Although compulsive drug taking is an important defining feature of addiction, the
most challenging clinical feature of addicts is that they remain vulnerable to re-
lapse, even after long periods of withdrawal (Stewart 2008). Clinical and experi-
mental studies have shown that non-contingent injections of drugs, re-exposure to
drug-paired cues, and stress are three factors reinstating drug taking and seeking
behavior (Shaham et al. 2003). In a typical reinstatement model of relapse, animals
are first trained to acquire responses that lead to the drug (e.g., lever press in order
to gain access to the drug). Next, they undergo “extinction training” in which, re-
sponses no longer result in the drug outcome. Once the behavior has extinguished,
in a subsequent test phase, the effect of different factors triggering relapse (stress,
drug priming, drug cues) on the extinguished behavior is determined.

According to these experimental procedures, developing formal representations
of the tasks is straightforward. The challenging point, however, is the effect of phar-
macological and environmental stimuli on the internal processes of a model, that
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is, how the effect of drug priming or stress on the brain neurocircuitry can be rep-
resented in computational models. In Sect. 8.4.3, we return to these questions and
suggest a potential way for modeling these manipulations.

8.4 Computational Accounts

8.4.1 S-R Models

Habit or S-R learning is the ability to learn adaptively to make appropriate responses
when some certain stimuli are observed. According to this theory, given a situation
or stimulus, if making a certain response produces a reward (a pleasant, biologically
salient outcome), then the corresponding S-R association will be potentiated (rein-
forced) and thus, the probability of taking that response in similar circumstances in
the future will increase. Inversely, a behavior will occur less frequently in the future,
if it is followed by a punishment (an aversive outcome). In this manner, animals can
be viewed as organisms that acquire appropriate behavioral strategies in order to
maximize rewards and minimize punishments. This problem, faced by the animals,
is analogous to the problem addressed in the machine learning theory of reinforce-
ment learning (RL), which studies how an artificial agent can learn, by trial and
error, to make actions to maximize rewards and minimize punishments. Indeed, in
recent years, strong links have been forged between a method of RL, called Tempo-
ral Difference Reinforcement Learning (TDRL), animal conditioning literature and
the potential underlying neural circuits of decision making. The developed neuro-
computational models in this interdisciplinary field has provided as an appropriate
basis for modeling drug addiction.

In the RL framework, stimulus and response are referred to as “state” and “ac-
tion”, respectively. At each time-step, t , the agent is in a certain state, say st , and
among the several possible choices, it takes an action, say at , on the basis of sub-
jective values that it has assigned to those alternatives through its past experiences
in the environment. These assigned values are called Q-values. The more Q-value
does an action have, the more likely that action is to be selected for performance.
Denoting the probability of taking action at at state st by π(at |st ), the below equa-
tion known as the Softmax rule reflects this feature:

π(at |st ) = eβQ(st ,at )
/ ∑

b∈Ast

eβQ(st ,b) (8.1)

where Ast is the set of all available choices at state st . β is a free parameter deter-
mining the degree of dependence of the policy π on Q-values. In other words, this
parameters adjust the exploration/exploitation trade-off.

For making optimal decisions, Q-values are aimed to be proportional to the dis-
counted total rewards that are expected to be received after taking the action onward:

Q(st , at ) = E
[
rt + γ rt+1 + γ 2rt+2 + · · · |st , at

]
= E

[ ∞∑

i=t

γ i−t ri |st , at

]

(8.2)
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Achieving this objective requires the animal to sufficiently explore the task envi-
ronment. In the previous equation, 0 < γ < 1 is the discount factor, which indicates
the relative incentive value of immediate rewards compared to delayed ones.

To update the prior Q-values, a variant of RL known as TDRL calculates a pre-
diction error signal each time the agent takes an action and receives a reward (as a
feedback) from the environment. This prediction error is calculated by comparing
the prior expected value of taking that action, Q(st , at ), with its realized value after
receiving the reward rt :

δt = γ (rt+1 + V (st+1)) − Q(st , at ) (8.3)

In this equation, V (st+1) is the maximum value of all feasible actions available
at the state that comes after taking the action at . This prediction error is then utilized
to update the estimated value for that action:

Q(st , at ) ← Q(st , at ) + αδt (8.4)

where 0 < α < 1 is the learning rate, determining the degree to which a new experi-
ence affects the Q-values. As a critical observation, the phasic activity of midbrain
dopamine (DA) neurons is demonstrated to be significantly correlated with the pre-
diction error signal that the TDRL model predicts (Schultz et al. 1997). In fact,
dopamine neurons projecting to associative learning structures of the cortico-basal
ganglia circuit are believed to carry a teaching signal that modulates the strength of
S-R associations and thus, will increase the probability of taking an action in the
future, if an unexpected reward has come as a consequence of that action.

TDRL provides a framework for the better understating of the S-R habit forma-
tion. In this framework, reinforcement of an association between stimulus s and
response a after receiving a reward is equivalent to an increase in Q(st , at ) . By uti-
lizing the softmax action-selection rule, this will result in increasing the probability
of taking that action in the future. By interpreting the TDRL model from another
point of view, since only previously learned values accumulated through time deter-
mine which action the model takes in a certain state, the behavior of a TDRL model
is not sensitive to sudden environmental changes. In other words, it takes several
learning trials for the value of actions to be updated according to the new condi-
tions. On the basis of this feature, the TDRL framework is behaviorally consistent
with habitual (S-R) responding.

8.4.1.1 Redish’s Model

If phasic dopamine activity corresponds to the reward prediction error signal, then
after sufficient learning when predictions converge to their true values, the pre-
diction error and thus phasic DA activity should converge to zero. In fact, this
happens in the case of natural rewards: after adequate learning trials, the phasic
activity of DA neurons vanishes. However, this is not true in the case of drugs
such as cocaine and amphetamine. These drugs, through their neuropharmacological
mechanisms, increase dopamine concentration within the striatum (Ito et al. 2002;
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Stuber et al. 2005). This artificial build up of dopamine readily means that the error
signal can not converge to zero in the course of learning and as a consequence, the
experienced value of drug-related behaviors will grow more than expected. Based on
this argument, a modified version of the TDRL algorithm is proposed Redish (2004)
that can explain some behavioral aspects of addiction. Assuming that the pharma-
cological effect of drugs induces a bias with the magnitude of D on dopaminergic
signalling, the error signal equation (8.3) can be rewritten as below when drug is
available (Redish 2004):

δc
t = max(γ (rt + V (st+1)) − Q(st , at ) + D(st ),D(st )) (8.5)

This implies that the prediction error signal will always be higher than D, as long
as the drug’s effect is available:

δc
t ≥ D(st ) (8.6)

Hence, by each drug consumption session the value that a decision-maker pre-
dicts for drug-seeking and -taking increases. This leads to the over-valuation of this
behavior and explains why drug-associated behaviors become more and more insen-
sitive to their harmful consequences through the course of addiction, as measured
by the behavior of the model in the environment shown in Fig. 8.1. In fact, as drug-
related S-R associations become more and more reinforced, only a more intense
adverse event can cancel out the high estimated value of drug-seeking. This model,
thus, explains how compulsive drug-seeking habits develop as a result of repeated
drug abuse.

Thus, the model proposed in Redish (2004) provides an elegant explanation for
progressive inelasticity of drug consumption as a function of the drug exposure his-
tory. However, this account does not propose explanations for other addictive behav-
iors such as impulsivity and relapse. Besides, some predictions of the model have
proven inconsistent with some studies that have explicitly investigated the validity
of the way in which the effect of drugs are modeled on the error signal.

Firstly, the model predicts that the true value of drug can never be predicted by
environmental cues, because it is always better than expected. A behavioral implica-
tion of this property is that the “blocking” effect (Kamin 1969) should not occur for
the case of drugs (Redish 2004). In fact, the “blocking” phenomenon occurs when
a stimulus, as a result of sufficient training, can correctly predict the value of the
upcoming outcome. In this case, if a new stimulus is paired with the old one after
the training period, since the old stimulus can correctly predict the value of the out-
come, no prediction error (teaching signal) should be generated and thus, no new
learning will occur. Therefore, it is said that the old highly-trained stimulus blocks
other stimuli to be associated with the outcome. However, as the model proposed in
Redish (2004) assumes that drugs always induce non-compensable dopamine sig-
nalling, it predicts that the blocking effect should not be observed for stimuli that
predict drugs. However, experimental results have shown that the “blocking” effect
does occur in the case of drugs (Panlilio et al. 2007) and thus, the always-better-
than-expected value formation for the drug is not a correct formulation. Secondly,
the validity of this method of value learning is investigated even more explicitly. In
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Marks et al. (2010), rats were first trained to press two levers in order to receive
a large dose of cocaine. Then, the dose associated with one of the levers was de-
creased. Here, the theory predicts that the value associated with the low-dose lever
will not decrease, because drug consumption always increases the value irrespec-
tive of the experienced dose (see Eq. (8.6)). At odds with this prediction, the result
showed that the lever press performance for the reduced-dose lever has decreased,
which indicates that the value of the drug has decreased.

8.4.1.2 Dezfouli et al.’s Model

Borrowing from the model proposed by Redish (2004) (the idea that drugs increase
the error signal), we proposed another computational model for drug addiction (Dez-
fouli et al. 2009) that is based on the supplementary assumption that long-term ex-
posure to drugs causes a long lasting dysregulation in the reward processing system
(Koob and Le Moal 2005a). Consistent with behavioral findings, this persistent dys-
regulation causes less motivation in addicts toward natural rewards like sexually
evocative visual stimuli, as well as secondary rewards like money (Garavan et al.
2000; Goldstein et al. 2007).

This dysregulation of the reward system can be modeled in a variant of the TDRL
algorithm called “average-reward” TDRL (Mahadevan 1996). In this computational
framework, before affecting the current strength of associations, rewards are mea-
sured against a level called “basal reward level” (Denoted by ρt ). As a result, an
outcome will have reinforcing effect only if the reward value is higher than the basal
reward level. Otherwise, the reinforcing value of the outcome will be negative. The
basal reward level, according to this framework, is equal to the average reward per
step, which can be computed by an exponentially weighted moving average over
experienced rewards (σ is the weight given to the most recent received reward):

ρt ← (1 − σ )ρt + σ rt (8.7)

In fact, an outcome will reinforce the corresponding association only if it has a re-
warding value higher than what the animal receives on average. In this formulation,
the value of a state-action is the undiscounted sum of all future rewards measured
against ρt :

Q(st , at ) = E

[ ∞∑

i=t

(ri − ρi )|st , at

]

(8.8)

These state-action values can be learned using the following error signal:

δt = γ (rt+1 + V (st+1)) − Q(st , at ) − ρt (8.9)

Using this error signal, Q-values are updated by the same rule of Eq. (8.4). The
definition of the error signal in the average reward RL algorithm does not imply that
the value of a state is insensitive to the arrival time of future rewards. In contrast, in
Eq. (8.9), the average reward (ρt ) is subtracted from V (st+1), meaning that by wait-
ing in state s for one time step, the agent loses an opportunity to gain potential future
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rewards. This opportunity cost is, in average, equal to ρt , and is subtracted from the
value of the next state. This learning method guides action selection to a policy that
maximizes the expected reward per step, rather than maximizing the sum of dis-
counted rewards. As in the simple TDRL framework, the error signal computed by
Eq. (8.9) corresponds to the phasic activity of DA neurons. The term ρt , on the other
hand, is suggested to be coded by the tonic activity of DA neurons (Niv et al. 2007).

Roughly, long-term exposure to drugs causes two, perhaps causally related, ef-
fects on the dopamine-dependent reward circuitry. Firstly, chronic exposure to drugs
affects the dopamine receptors availability within the striatum. Human subjects
and non-human primates with a wide range of drug addictions have shown sig-
nificant reductions in D2 receptor density within the striatum (Nader et al. 2002;
Porrino et al. 2004a; Volkow et al. 2004b). This effect reduces the impact of normal
dopamine release that carries the error signal and thus, results in a reduction in the
magnitude of the error signal, compared to its normal value (Smith et al. 2006). Sec-
ondly, it is proposed that chronic drug abuse causes an abnormal increase in the tonic
activity of dopamine neurons (Ahmed and Koob 2005). As the tonic DA activity is
hypothesized to encode the ρt signal, this second effect of drugs can be modeled by
abnormal elevation of the basal reward level. Thirdly, as mentioned earlier, chronic
drug exposure causes decreased sensitivity of the reward system to natural rewards.
This effect can be interpreted as an abnormal elevation of the level against which
reward is measured. In other words, long-term drug abuse elevates the basal reward
level to a level that is higher than that of normal subjects. This drug-induced ele-
vation of the basal reward level, ρt , can be formally captured by adding a bias to
it:

ρc
t = ρt + κt (8.10)

Normally, κt is zero and therefore, rewards are measured against their average
level (ρt ). However, with drug use, κt grows and consequently, the basal reward
level elevates abnormally to ρc

t . This modification covers all the three long-term
effects of drugs discussed above. As adding a positive bias to ρt leads to a decrease
in the error signal (see Eq. (8.9)), it is somehow reflecting the reduced availability
of dopamine receptors. Alternatively, if ρt is related to the tonic activity of DA
neurons, adding a bias to it corresponds to an increase in the tonic activity of these
neurons.

According to the above modification to the average reward TDRL algorithm, we
rewrite the error signal equation for the case of drugs as follows:

δc
t = max(γ (rt + V (st+1)) − Q(st , at ) + D(st ),D(st )) − ρc

t (8.11)

Similar to the model proposed in Redish (2004), the maximization operator re-
flects the drugs’ neuropharmacological effects, but unlike that model, the error sig-
nal is not always greater than zero. In this model, although drugs produce extra
dopamine through direct pharmacological mechanisms, due to the increase in the
basal reward level, the error signal will eventually converge to zero. This property
ensures that the estimated value of the drug does not grow unboundedly, which
makes the model more biologically plausible. Furthermore, as the prediction error
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signal in this model can converge to zero after sufficient experience with drugs,
no further learning will occur after extensive training. This will result the drug-
predicting stimuli to block forming new associations. This is consistent with the
report that the blocking effect is observed for the case of drugs (Panlilio et al. 2007).

It should be noted that because abnormal elevation of the basal reward level is
a slow process, the error signal under the effect of drugs will be above zero for a
relatively long time and thus, drug-seeking habits will be abnormally reinforced.
This leads to insensitivity of drug consumption to drug associated punishment, as
indicated by the tendency of the model toward C2 in the environment shown in
Fig. 8.1.

As the decision-making system is common for natural and drug reinforcers, de-
viation of the basal reward level from its normal value can also have adverse effects
on decision making in the case of natural rewards. Within the framework proposed
above, ρc

t determines the cost of waiting. Hence, high values of ρc
t in an environ-

ment indicate that waiting is costly and thus, guide the decision maker to options
with a relatively faster reward delivery. In contrast, low values indicate that the de-
layed interval before reward delivery is not costly and it is worth waiting for a de-
layed but large reward. If chronic drug exposure leads to high values of ρc

t , then the
model’s behavioral strategy will shift abnormally toward more immediate rewards,
even if their rewarding value is less than that of distant rewards. In other words, in
the environment show in Fig. 8.2, preference of the model toward C1 increases as
the degree of prior exposure to drug increases. This is because the cost of waiting
is relatively high and the decision-maker prefers to have immediate rewards. This
explains why addicts become impulsive after chronic drug abuse (Logue et al. 1992;
Paine et al. 2003; Simon et al. 2007).

As another deficit in the decision-making mechanism, since the basal reward
level abnormally elevates in addicts, the model predicts that the motivation for
natural reinforcers will decrease after long-term drug exposure. This prediction
is consistent with behavioral evidence in human addicts (Garavan et al. 2000;
Goldstein et al. 2007).

8.4.2 S-S and S-R Interaction: Actor-Critic Models

Actor-critic is a popular reinforcement learning model that subdivides the process of
decision making into two subtasks: learning and action-selection (Sutton and Barto
1998). These two tasks are conducted by the “critic” and the “actor” components,
respectively.

The critic component is responsible for adaptively predicting the value of states,
V (st ), by utilizing the prediction error signal. Assuming that the agent leaves state
st , enters state st+1 and receives reward rt at time t , the critic will compute the
prediction error signal based on the received reward and the prior expectation of the
agent:

δt = γ (rt + V (st+1)) − V (st ) (8.12)
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This prediction error is then used for updating predictions of the critic:

V (st ) ← V (st ) + αδt (8.13)

where, as before, α is the learning rate. As the critic only predicts the value of a
state (V (st )), without caring about what action or external cause has led to it, it is
suggested to be a model for S-S (Pavlovian) learning.

The actor component, on the other hand, is involved in making decisions about
what action to perform at each state, based on its stored preferences for different
actions, P(st , at ): the higher the preference toward an action, the higher the prob-
ability of taking that action by the actor. The preferences in the actor are learned
based on the values learned by the critic: if taking an action by the actor in a state
results in an increase in the value of the state (computed by the critic), the preference
toward that action will also increase. The converse is also true: if taking an action
leads to a decrease in the critic’s value of the state, the probability that the actor
takes the action again also decreases by decreasing the preference for that action.

For achieving this harmony, the critical feature of the actor-critic model is that
the preferences in the actor are updated using the same prediction error signal that
is produced and utilized by the critic component:

P(st , at ) ← P(st , at ) + αδt (8.14)

The fact that the actor uses the error signal generated by the critic can be viewed
as an interaction between the S-S (critic) and the S-R (actor) systems. Behaviorally,
conditioned reinforcement phenomenon implies that a CS which is associated with
a reinforcer (e.g., a light associated with food) supports the acquisition of a new
instrumental response (pressing a lever in order to turn the light on). Here, the asso-
ciation between the CS and the reinforcer can be learned by the critic component,
that is, the value of the state in which the CS is presented (sCS ) increases as the
reward in the subsequent state (reward delivery state) is experienced. Next, when
several actions are available in a state (sA), the action that leads to sCS obtains a
higher preference (learned by the actor), because taking that action leads to an in-
crease in the value of sA, as predicted by the critic.

In this respect, dissociating the functions of prediction and action-selection in
the actor-critic model is reminiscent of the behavioral psychologist dissociation
between Pavlovian and instrumental processes (Niv 2007; Joel et al. 2002). Con-
sistently, a relatively rich body of experiments has shown the dissociable role
of striatal subdivisions in prediction and action-selection (O’Doherty et al. 2004;
Roesch et al. 2009). Based on these observations, critic and actor components can
be thought to be neurally implemented by limbic and sensorimotor cortico-striatal
loops, respectively.

Dopamine neurons are hypothesized to integrate information across parallel
loops in the cortico-basal ganglia circuit (Haber et al. 2000; Haber 2003), by prop-
agating the prediction error signal made by more limbic (ventral) regions toward
associative (dorsomedial) and then motor (dorsolateral) areas of the striatum, via
the spiral organization of dopamine neurons. By these spiral connections between
the striatum and the VTA/SNc, the output of the accumbens shell can affect the
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functioning of the core region and in the same way, the output of the accumbens
core can influence more dorsal domains of the striatum, via SNc. These dopamine
spirals that travel from the ventral to the dorsal regions of the striatum can account
for the assumption of the model that the prediction error signal used for updating
the actor’s preferences is the same signal generated and used by the critic (Joel et
al. 2002). These behavioral and neurobiological supports of the actor-critic model
has made it a popular model for decision making analysis, and the central role that
dopamine plays in it, has allowed addiction-modelers to employ it as a basis for
their models.

8.4.2.1 Dayan’s Model

Recently, inspired by the model proposed in Redish (2004), Dayan proposed an
actor-critic model for addiction (Dayan 2009). The model is based on a variant of
the actor-critic model called “advantage learning” (Dayan and Balleine 2002) in
which, the critic module has the same algorithm as the classical actor-critic model
explained above. Thus, the critic module produces a prediction error signal (δV ) and
uses it for both updating its own value predictions (as in Eq. (8.13)) and also feeding
it into the actor component. Rather than learning the preference toward actions, the
actor component learns the advantage of taking that action over all other actions that
has been previously taken in that state. This “advantage” is denoted by A(st , at ). To
learn this “advantage”, the actor uses a transformed error signal δA:

δA = δV − A(st , at ) (8.15)

This signal is then used to update the expected advantages:

A(st , at ) ← A(st , at ) + αδA (8.16)

The actor utilizes advantages instead of classic preferences to choose among dif-
ferent possible actions. After sufficient learning, as the best action will be the action
that the agent takes frequently, its advantage over previously taken actions will tend
to zero and the advantage of other alternatives will become negative in their steady
levels.

The basis of this model is a hypothesis suggested in Everitt and Robbins (2005)
that explains addiction, at a behavioral level, as a transition from voluntary control
over drug consumption at the early stages to rigid habitual and compulsive behav-
ior in later stages. Specifically, the hypothesis indicates that this behavioral shift is
based on a transition of control over drug-seeking behavior from limbic structures,
such as prefrontal cortex (PFC) and nucleus accumbens (NAc), to more motor struc-
tures, particularly dorsal striatum. Neurobiological evidence has suggested that this
shift is mainly mediated by striatal-midbrain spiraling network that connects the
ventral regions of the striatum to more the dorsal parts (Belin and Everitt 2008). Ac-
cording to the Dayan’s model, the pharmacological effect of drugs on the dopamine
spirals will not only affect the actor indirectly through its effect on the critic’s error
signal, δV , but will also directly affect the actor’s updating mechanism due to its
effect on δA.
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In fact, if the pharmacological effect of drugs is assumed to be equal to D, then
it will be augmented to the critic’s error signal and thus, the critic’s value for a drug
state will converge to γ (rD + V (st+1)) + D. Similarly, due to the effect of drugs on
δA, the advantage of drug-related actions will increase by D units. This abnormality
has been interpreted as a reason to explain why drug-seeking behavior becomes
compulsive. The model in Dayan (2009) can also explain how addictive drugs can
induce abnormal drug-seeking behavior without abnormally affecting the addict’s
expectations stored in the critic.

8.4.2.2 Piray et al.’s Model

So far, we have described models that have explained addiction as a disease that
is pervasively augmented by drug experience. However, like other diseases, addic-
tion requires a suitable host, that is, a susceptible individual, to spread (Nader et
al. 2008). Indeed, overwhelming evidence has shown that only a subpopulation of
humans, as well as animals, that have experienced drugs, show symptoms of ad-
diction (compulsive drug seeking and taking) (O’Brien et al. 1986). Some behav-
ioral traits and neural vulnerabilities have been hypothesized to predispose addic-
tion (Koob and Le Moal 2005a; Everitt et al. 2008; Nader et al. 2008). Importantly,
a large body of literature suggests a crucial role for dopamine receptors in predispo-
sition to exhibit addiction-like behavior. For example, Dalley and colleagues have
shown that lower density of D2 receptors in NAc, but not dorsal striatum, of rats,
predicts higher tendency to cocaine self-administration and also addiction-like be-
havior (Dalley et al. 2007; Belin et al. 2008). Similar results have been reported in
non-human primates’ neuroimaging studies (Nader et al. 2008), as well as in human
studies (Volkow et al. 2008). Moreover, it has been reported recently that low D1 re-
ceptor availability within NAc predisposes tendency to cocaine self-administration
(Martinez et al. 2009).

In a similar line, a wealth of evidence has shown the important role of dopamine
receptors in the development of obesity (Johnson and Kenny 2010) and pathological
gambling (Steeves et al. 2009). This is computationally important because a com-
mon framework for these diseases and drug addiction, as suggested by Volkow et
al. (2008) and Potenza (2008), cannot be constructed only by focusing on the di-
rect pharmacological effects of drugs (Ahmed 2004), but instead, there should be
a model that some elements of it bootstrap abnormal and compulsive tendency to
rewarding stimuli.

Recently, we proposed a simple actor-critic like model to capture this feature
of addiction (Piray et al. 2010). The model relies on three assumptions motivated
by neurobiological evidence: (1) VTA dopamine neurons encode action-dependent
prediction error (Roesch et al. 2007; Morris et al. 2006) and ventral striatal neurons
encode action-dependent values (Roesch et al. 2009; Nicola 2007; Ito and Doya
2009), (2) lower co-availability of D1 and D2 receptors, that is, lower availability
of either D1 or D2, in NAc is a necessary condition for addiction to both drug
and food to develop (Hopf et al. 2003; Ikemoto et al. 1997; Dalley et al. 2007;
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Johnson and Kenny 2010; Martinez et al. 2009), and (3) the first leg of the spiral,
that is, posteromedial VTA to NAc shell, is involved in appetitive but not aversive
learning (Ford et al. 2006; Ikemoto 2007).

The translation of these assumptions to actor-critic components is straight-
forward. The first assumption can be interpreted as an action-dependent value repre-
sentation in the critic, V (st , at ), and also action-dependent prediction error, instead
of action-independent ones (see Eq. (8.12):

δt = γ (rt + V (st+1)) − V (st , at ) (8.17)

V (st+1) is again the value of the best available choice at state st+1 (see Piray et al.
2010 for further discussion).

To model the second assumption, we need to suppose a role for dopamine re-
ceptors in terms of the actor-critic model. In line with previous studies (Rutledge
et al. 2009; Frank et al. 2007), we have assumed that the availability of dopamine
receptors modulates the learning rate (see Smith et al. 2006; Dezfouli et al. 2009 for
other ways of modeling the function of dopamine receptors in RL models). Thus, a
slight modification in the critic’s learning rule, Eq. (8.13), is required:

V (st , at ) ← V (st , at ) + κcαδt if r > 0 (8.18)

where κc corresponds to the availability of dopamine receptors in the NAc. In this
formulation, the second assumption can be realized by normalizing the parameter
κc to one for a healthy subject, and setting it to a value less than one (κc < 1) for
individuals who are susceptible to addiction. Finally, the third assumption implies
that only appetitive, but not aversive, learning is modulated by the availability of
dopamine receptors. Thus, Eq. (8.18) should only be used for appetitive learning;
and for learning the value of aversive outcomes (r < 0), the prediction error com-
puted by Eq. (8.17) will be used directly.

The behavior of the model can be examined in the task introduced in Deroche-
Gamonet et al. (2004). In this experiment, animals learn to self-administer drugs by
performing a lever-press action firstly. In the next phase, the lever-press action gets
paired with an acute shock punishment. It has been reported that only a proportion of
rats, almost 20 percent, that had prolonged experience with drugs, show compulsive
behavior.

Figure 8.3 illustrates the behavior of the model in an environment that models
the mentioned experiment. As the figure shows, the simulated individual selects
the drug-related lever, even after removing the drug reward and instead, giving an
acute punishment (phase 2). Since the critic’s value is updated with κcαδ, but the
actor’s preference is updated by αδ, when κc < 1, the preference toward action a in
phase 1 increases abnormally, whereas it increases in a normal way in the critic. In
phase 2, however, both the value and the preference are updated by an equal amount
and thus, as the figure shows, the amount of drop in both the critic’s value and the
actor’s preference is equal. This drop is sufficient for the critic’s value, V (s, a), to
converge to rsh, but is not enough to make the preference, P(a, s), negative. For
action b, as the reward associated with it is zero, its value and preference remain
zero. Hence, in phase 2, while the value of action a falls below the value of action
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Fig. 8.3 (a) A model with vulnerability to addiction (κc = 0.25) performs the task illustrated in the
figure. In state s, the model chooses between two actions. Action a results in a drug reward (drug
taking action, rd = 10) and action b results in no reward. After sufficient learning in this phase, the
drug reward will be removed and action a is paired with a shock punishment, rsh (phase 2). (b) The
performance of the model proposed in Piray et al. (2010) in the mentioned task. While the optimal
behavior in phase 2 is choosing b, the vulnerable model chooses a. This is because the preference
toward a in phase 1 is abnormally exaggerated in the actor, while its value is normal in the critic.
Moreover, since learning from punishment is required in this phase, both value and preference
will be updated equally and thus, the amount of drop in both the critic’s value and the actor’s
preference is equal. After a while, the critic’s value converges to rsh and thus, the prediction error
by performing a converges to zero. As a result, no more changes in the value and the preference
associated with a occurs. This effect will decrease the critic’s value for a to a level below that of b
(zero), but is not sufficient to make the preference toward a negative. The origin of this behavior is
the abnormal increase in the actor’s preference (habit) toward a in phase 1

b, the preference toward action a is still above that of action b. In fact, when the
critic’s value converges to rsh, the prediction error of performing a converges to
zero and so, no change in the value and preference associated with a occurs.

Notably, if we assume that by chronic administration of drugs, the availability of
receptors will further decrease, which is supported by neurobiological data (Nader
et al. 2002; Porrino et al. 2004a; Volkow et al. 2004b), the discrepancy between
the values and the preferences in the appetitive system will further increase through
learning (see Piray et al. 2010 for details). Hence, the insensitivity of addicts to
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the negative consequences of drug-taking will increase after a prolonged experience
with drugs.

This model has two major behavioral implications. First, the compulsivity only
appears in vulnerable individuals. Second, compulsivity does not depend on the
pharmacological effect of drugs and thus, the model can explain compulsive ten-
dency to natural rewards, such as palatable foods and gambling, in a common frame-
work with compulsive drug taking. The important neurobiological implication of the
model is that compulsivity depends on abnormally strong actor’s preferences toward
drugs; however, it is the critic’s deficit that is the origin of this abnormal behavior.
Thus, the model accounts for the progressive shift of behavior control during drug
consumption from ventral to dorsal striatum, which is initiated by the ventral striatal
vulnerabilities and mediated by the dopaminergic spiralling network (Everitt et al.
2008; Porrino et al. 2004b).

8.4.3 S-R and S-A-O Interaction: Dual-Process Models

Whereas actor-critic models have tried to model some properties of the limbic and
sensorimotor loops as well as their interaction, dual-process models are focused on
the sensorimotor and associative loops, responsible for making habitual and goal-
directed decisions, respectively, as well as competitive and collaborative interac-
tions between them (Daw et al. 2005; Keramati et al. submitted). In this section
we explain a dual-process model that we have proposed recently (Keramati et al.
submitted), which we believe has important implications for explaining some as-
pects of addiction.

In this model, similar to the seminal dual-process model (Daw et al. 2005), the
fundamental nature of the habitual system is the same as a simple TDRL model
discussed in previous sections. This system is capable of enforcing or weakening an
association between a state and an action (denoted by QH (st , at ), hereafter), based
on the prediction error signal, which is hypothesize to be carried by the phasic ac-
tivity of dopamine neurons (Schultz et al. 1997). At the time of decision making,
the established associations can be exploited, and as all the information needed for
making a choice between several alternatives is accumulated in S-R associations
from previous experiences, the habitual responses can be made within a short inter-
val after the stimulus is presented. However, this speed in action selection doesn’t
come without cost: because many learning trials are required for the outcomes of
an action to affect an association, the strength of associations are low-elastic to the
outcomes, making the habitual responses inaccurate, particularly under changing
motivational or environmental conditions.

In contrast, the goal-directed system is hypothesized to learn through experience
the causal relationship between actions and outcomes, so that it has access to a
decision tree at the time of decision making and can deliberate the consequences of
different alternatives. Denoting the learned dynamics of the environment by p̂T (s

a→
s′) (indicating the probability of traveling from state s to s′ by taking action a), and
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the reward function by p̂R(r|s, a) (indicating the probability of receiving reward
r by taking action a at state s), the estimated value of a state-action pair can be
calculated by the below recursive equation. This algorithm is intuitively equivalent
to a full-depth search in a decision tree for finding the maximum attainable reward
by taking each of the available choices:

Q̂G(st , at ) = E
[
p̂R(r|st , at )

]
+ γ

∑

s′
p̂T

(
st

at→ s′).V̂
(
s′) (8.19)

Although this system can estimate the value of actions more accurately and more
optimally, it is not as fast as the habitual system because of the cognitive load
(tree search) required for value estimation. Thus, the animals’ decision making ma-
chinery is always confronted with a trade-off between speed and accuracy; that is,
whether to make a fast, but inaccurate habitual response, or to wait for the goal-
directed system to make a more optimal decision. This trade-off is hypothesized to
be based on a cost-benefit analysis. Assuming that the time needed for the goal-
directed system to accurately calculate the estimated value of each available action
is τ , the cost of deliberating for each response will be R̄τ , where R̄ is the amount of
reward that the animal is expected to receive at each unit of time. This variable can
be simply computed by taking an average over the rewards obtained through time in
the past, as in Eq. (8.7). As discussed before, this average reward signal is hypothe-
sized to be carried by the tonic activity of dopamine neurons (Niv et al. 2007). Thus,
if for whatever reason the tonic firing rate of dopamine neurons elevates, the model
predicts that the cost of goal-directed responding will increase and consequently,
decisions will be made more habitually.

The benefit of deliberation for a certain action, on the other hand, is equal to
how much the animal estimates that having the exact value of that action will help
it improve its decision policy. This parameter, called “value of perfect information
(VPI)”, is computable using the estimated Q-values and their corresponding uncer-
tainties cached in the habitual system. Without going into details of the algorithm,
one critical prediction of the model is that if the values of two competing actions,
estimated by the habitual system, are very close together, then knowing their exact
values would greatly help the animal make the optimal decision between those two
choices. In contrast, if at a certain state, the estimated value of one of the feasible
choices is markedly greater than other actions, and its uncertainty is low, then it can
be inferred by the animal that it is less likely that having perfect information about
the value of actions will change its initial conjecture about the best choice, made by
the habitual system. Thus, under such conditions, the goal-directed system will not
contribute to the decision making process.

As the consistency of the model with behavioral and neuronal findings is dis-
cussed in the original paper (Keramati et al. submitted), we focus here on the impli-
cations of the model for addiction.

All the previous computational theories of addiction discussed in this chapter
explain how drug-seeking and drug-taking habits consolidate through the course
of addiction as a result of neuroplasticity in different regions of the cortico-basal
ganglia circuit, under the effect of dopamine bursts. Although these models have
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proven fruitful to some degrees, many theories of addiction emphasize on impair-
ment of top-down cognitive control as the essential source of compulsivity. Inability
of addicts in breaking habits that have evident adverse consequences is attributed
to dysfunctional prefrontal cortical executive control over abnormally strong mal-
adaptive habits. In fact, the evolution of control over behavior from ventral to dorsal
striatum, discussed in the previous section, is followed by a shift within the dorsal
striatum from action-outcome to stimulus-response mechanisms (Pierce and Van-
derschuren 2010; Belin et al. 2009).

Taking into account the effect of drugs on phasic dopamine, the dual-process
model discussed above can explain how addictive drugs, by over-reinforcing
stimulus-response associations, result in the estimated value of the habitual sys-
tem for drug-seeking choices becoming maladaptively high. As a consequence, the
VPI signal (benefit of deliberation) for those actions will be very low after long-
term drug consumption and thus, the individual will make habitual and automatic
responses, without considering the possible consequences. Consistent with this pre-
diction, it has been reported that short-term drug seeking is a goal-directed behavior,
whereas after prolonged drug exposure, drug seeking becomes habitual (Zapata et
al. 2010). According to the models introduced in the previous sections, this is equiv-
alent to the insensitivity of drug consumption to harmful consequences.

Beside the direct effect of addictive drugs on reinforcing drug-seeking S-R as-
sociations through their pharmacological effect on the dopaminergic circuit, they
also pathologically subvert higher level learning mechanisms responsible for sup-
pressing inflexible responses. Protracted exposure to drugs of abuse is widely re-
ported to associate with behavioral deficits in tasks that require cognitive areas of
the brain to be involved (Rogers and Robbins 2001; Almeida et al. 2008). Reduc-
tion in the activity of the PFC regions in abstinent addicts is also reported in many
imaging studies (Goldstein and Volkow 2002; Volkow et al. 2004a). Interestingly,
extended access to cocaine has shown to induce long-lasting impairments in work-
ing memory-dependent tasks, accompanied with decreased density of neurons in
dorsomedial PFC (George et al. 2008). Considering the role of this region in goal-
directed decision making, the atrophy of the associative cortex induced by drugs
can further disrupt the balance between the goal-directed and habitual systems in
favor of the latter. One simple way to model these morphological neuroadaptations
in the dual-process framework is to assume that debility of the goal-directed system
corresponds to its weakness in searching for the accurate estimated value of actions
in the decision tree. Thus, reaching an acceptable level of accuracy (searching deep
enough) to obtain “perfect information” will require more time (τ ) in addicts, com-
pared to healthy individuals. The assumption that the low performance of addicts in
cognitive tasks can be modelled by a higher-than-normal τ can be tested by compar-
ing the addicts’ reaction time with that of healthy individuals, at the early stages of
learning when responding is still goal-directed. Furthermore, since the deliberation
time constitutes the cost of deliberation, another prediction that comes from this
assumption is that addicts, because of having higher-than-normal deliberation cost,
are less prone to deliberate and thus, more prone to make habitual responses than
normal subjects. Thus, habitual responding for natural rewards must appear earlier
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in addicts, compared to non-addict subjects. In addition, addicts must be more vul-
nerable than healthy subjects to commit actions with catastrophic consequences, not
only in drug-associated cases, but also in other aspects of their daily lives.

The arbitration between the two systems is not only under the effect of long-
lasting brain adaptations (like the two mechanisms described above: drug affects
VPI and τ signals), but some transient changes in the brain decision making vari-
ables might also affect the arbitration between the two systems for a short period
of time. For example, if for any reason the tonic dopamine, which is assumed to
encode the average reward signal, increases for a certain period, the model pre-
dicts that the cost of deliberation will increase and thus, the individual will be
more susceptible to make habitual responses during that period. This prediction
of the model can explain why drug relapse is often precipitated by exposure to
drug-associated cues, non-contingent drug injection, or stress (Shaham et al. 2003;
Kalivas and McFarland 2003). In fact, the model explains that after prolonged absti-
nence, these three triggers of relapse revive the habitual system by increasing tonic
dopamine and therefore, result in the dormant maladaptive habits to drive the behav-
ior again toward drug consumption. Stress, as a potent trigger of relapse, has shown
to increase extracellular concentration of dopamine in cortical and subcortical brain
regions in both animal models of addiction (Thierry et al. 1976; Mantz et al. 1989)
and humans (Montgomery et al. 2006). Intermittent tail-shock stress, for example,
increases extracellular dopamine relative to the baseline by 39% and 95% in nu-
cleus accumbens and medial frontal cortex, respectively (Abercrombie et al. 1989).
Interestingly, protracted exposure to stress, similar to the effect of chronic drug con-
sumption, results in the atrophy of the medial prefrontal cortex and the associa-
tive striatum, as well as hypertrophy of the sensorimotor striatum. These structural
changes are accompanied with progressive behavioral insensitivity to the outcome
of responses (Dias-Ferreira et al. 2009). This phenomenon can be explained in a
similar argument proposed for explaining the long-lasting effect of drugs on the as-
sociative loop. Exposure to drug cues and drug-priming (non-contingent injection
of drugs), as other triggers of relapse, are also well-known to increase extracel-
lular dopamine for a considerable period of time (Di Chiara and Imperato 1988;
Ito et al. 2002).

In sum, the dual-process model proposed above, explains the story of addic-
tion in a scenario like this: at the early stages of drug self-administration, similar
to responding for natural rewards, responding for drugs is controlled by the goal-
directed system. After extensive training, as a result of a decrease in the VPI signal,
as well as an increase in the average reward signal and deliberation time (as de-
scribed before), the habitual behavior takes control over behavior. At this stage, as
no drug is delivered to the animal anymore (extinction period), the average reward
signal will drop significantly and thus, the goal-directed system will again take con-
trol over behavior. Finally, when a relapse trigger is experienced by the animal,
the average reward signal increases again and thus, the habitual system can again
come to the scene. Hence, the high values assigned to drug-seeking behavior by
the habitual system will make the animal motivated to start responding for the drug
again.
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As explained above, this scenario is based on the assumption that the goal-
directed system doesn’t predict maladaptively high values for drug-seeking behav-
iors. This assumption implies that animals with inactivated brain regions underlying
the habitual system should not develop compulsive behavior.

Furthermore, it is assumed that after the extinction period, the habitual system as-
signs a high value to drug seeking and taking behavior when the animal is exposed
to relapse-triggering conditions. This property cannot be explained by the compu-
tational models of the S-R system introduced previously. This is because during
the extinction phase, drug taking action is not followed by a drug reward and thus,
drug seeking and taking actions lose their assigned values. This implies that the ha-
bitual system will not exhibit a compulsive behavior after extinction training. To
explain the fact that drug-related behaviors regain high values after the animal faces
relapse-triggers, it is necessary to incorporate more complicated mechanisms into
the habitual system to represent the effect of relapse-triggers on habitual responding
(see Redish et al. 2007 for the case of cue-induced relapse).

Finally, the explained scenario predicts that the reinstatement of drug seeking
behavior is due to the transition of control from the goal-directed system to the
habitual system. However, it is still unclear whether the drug seeking response after
reinstatement is under the control of the habitual system or the goal directed system
(Root et al. 2009).

8.5 Conclusion

Drug addiction is definitely a much more complicated phenomenon, both behav-
iorally and neurally, than the simplified image presented in this chapter. Neurally,
different drugs have different sites of action and even for a certain drug like co-
caine, the dopaminergic system is not the only circuit that is under the pharma-
cological effect. For example, serotonergic (Dhonnchadha and Cunningham 2008;
Bubar and Cunningham 2008) and glutamatergic (Kalivas 2009) systems are also
shown to be affected by drugs. However, the computational theory of reinforce-
ment learning has proven to be an appropriate framework to approach this com-
plex phenomenon. The great advantage of this framework is in its ability to bridge
between behavioral and neural findings. Moreover, modeling DA receptors’ avail-
ability within the actor-critic framework (Piray et al. 2010), as an example, shows
that the RL framework is also potentially capable of modeling at least some of the
detailed neuronal mechanisms.

There are still many steps to be taken in order to improve the current RL-based
models of addiction. On important step is to develop an integrated model that can
have all the three learning processes (Pavlovian, habitual and goal-directed) at the
same time. Such a model would be expected to explain several behavioral aspects
of addiction like loss of cognitive control, as well as the influence that Pavlovian
predictors of drugs can exert on habitual and/or goal-directed systems (the role of
PIT in cue-triggered relapse).
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