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Abstract
Within a rational framework, a decision-maker selects actions based on the reward-maximization principle, which stipulates
that they acquire outcomes with the highest value at the lowest cost. Action selection can be divided into two dimensions:
selecting an action from various alternatives, and choosing its vigor, i.e., how fast the selected action should be executed.
Both of these dimensions depend on the values of outcomes, which are often affected as more outcomes are consumed
together with their associated actions. Despite this, previous research has only addressed the computational substrate of
optimal actions in the specific condition that the values of outcomes are constant. It is not known what actions are optimal
when the values of outcomes are non-stationary. Here, based on an optimal control framework, we derive a computational
model for optimal actions when outcome values are non-stationary. The results imply that, even when the values of outcomes
are changing, the optimal response rate is constant rather than decreasing. This finding shows that, in contrast to previous
theories, commonly observed changes in action rate cannot be attributed solely to changes in outcome value. We then
prove that this observation can be explained based on uncertainty about temporal horizons; e.g., the session duration. We
further show that, when multiple outcomes are available, the model explains probability matching as well as maximization
strategies. The model therefore provides a quantitative analysis of optimal action and explicit predictions for future testing.

Keywords Choice · Response vigor · Reward learning · Optimal actions

Introduction

According to normative theories of decision-making,
actions made by humans and animals are chosen with the
aim of earning the maximum amount of future reward whilst
incurring the lowest cost (Marshall, 1890; von Neumann
& Morgenstern, 1947). Within such theories individuals
optimize their actions by learning about their surrounding
environment so as to satisfy their long-term objectives. The
problem of finding the optimal action is, however, argued to
have two aspects: (1) choice, i.e., deciding which action to
select from several alternatives; and (2) vigor, i.e., deciding
how fast the selected action should be executed. For a rat
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in a Skinner box, for example, the problem of finding the
optimal action involves selecting a lever (choice) and
deciding at what rate to respond on that lever (vigor).
High response rates can have high costs (e.g., in terms of
energy consumption), whereas a low response rate could
have an opportunity cost if the experimental session ends
before the animal has earned sufficient reward. Optimal
actions provide the right balance between these two factors
and, based on the reinforcement-learning framework and
methods from optimal control theory, the characteristics
of optimal actions and their consistency with various
experimental studies have been previously elaborated
(Dayan, 2012; Niv, Daw, Joel, & Dayan, 2007; Niyogi,
Shizgal, & Dayan, 2014; Salimpour & Shadmehr, 2014).

These previous models have assumed, however, that
outcome values are stationary and do not change on-line
over the course of a decision-making session. To see the
limitations of such an assumption, imagine the rat is in
a Skinner box and has started to earn outcomes (e.g.,
food pellets) by taking actions. One can assume that, as a
result of consuming rewards, the motivation of the animal
to earn more food outcomes will decrease (e.g., because

Psychonomic Bulletin and Review (2019) 26:182–204

Published online: 3 July 2018

http://crossmark.crossref.org/dialog/?doi=10.3758/s13423-018-1500-3&domain=pdf
mailto: a.dezfouli@unsw.edu.au


of satiety) and, therefore, over time, the outcomes earned
will have a lower value. Such changes in value should
affect both optimal choice and vigor (Killeen, 1995) but
have largely been ignored in previous models. Nevertheless,
in most experimental and real-world scenarios, outcome
values are affected by the history of outcome consumption,
a phenomenon known as the “law of diminishing marginal
utility”1 in the economics literature, and as “drive reduction
theory” in psychological accounts of motivation, which
suppose that the drive for earning an outcome decreases
as the consequence of its prior consumption (Keramati &
Gutkin, 2014; Hull, 1943)2.

Here, building on previous work, we introduce the
concept of a reward field, which captures non-stationary
outcome values. Using this concept and methods from
optimal control theory, we derive the optimal response
vigor and choice strategy without assuming that outcome
values are stationary. In particular, the results indicate
that, even when the values of outcomes are changing,
the optimal response rate in a free-operant procedure3 is
a constant response rate. This finding rules out previous
suggestions that the commonly observed decrease in within-
session response rates is due to decreases in outcome value
(Killeen, 1995). Instead, we show that decreases in within-
session response rates can be explained by uncertainty
regarding session duration. This later analysis is made
possible by explicitly representing session duration in the
current model, which is another dimension in which the
current model extends previous work. The framework is
then extended to choice situations and specific predictions
are made concerning the conditions under which the optimal
strategy involves maximization or probability matching.

Model Specification

The outcome space

We define the outcome space as a coordinate space with
n dimensions, where n is the number of outcomes in the
environment. For example, in a free-operant procedure in
which the outcomes are water and food pellets, the outcome
space will have two dimensions corresponding to water and
food pellets. Within the outcome space, the state of the
decision-maker at time t is defined by two factors: (i) the
amount of earned outcome up to time t , which is denoted

1Also known as “First Law of Gossen” named for Hermann Heinrich
Gossen (1810–1858).
2Note that incentive learning accounts make broadly similar pre-
dictions to drive reduction for such on-line changes in value (cf.
Dickinson & Balleine, 1994).
3In a free-operant procedure an animal is free to make responses
continuously and repeatedly to earn outcomes.

by xt and can be thought of as the position of the decision-
maker in outcome space; e.g., in the above example, xt =
[1, 2] would indicate that one unit of water and two units
of food pellet have been gained up to time t ; and (ii)
the outcome rate at time t , denoted by vt , which can be
considered the velocity of the decision-maker in the out-
come space (vt = dxt /dt); e.g., if a rat is earning two units
of water and one unit of food pellet per unit of time, then
vt = [2, 1]. In general, we assume that the outcome rate
cannot be negative (v ≥ 0), which means that the cumulative
number of earned outcomes cannot decrease with time.

The reward

We assume that there exists an n-dimensional reward field,
denoted by Ax,t , where each element of Ax,t represents the
per unit value of each of the outcomes. For example, the
element of Ax,t corresponding to food pellets represents
the value of one unit of food pellet at time t , given that x
units of outcome have been previously consumed. As such,
Ax,t is a function of both time and the amount of outcome
earned. This represents the fact that (i) the reward value
of an outcome can change value as a result of consuming
previous outcomes, e.g., due to satiety (depending on x) and
(ii) the reward value of an outcome can change purely with
the passage of time; e.g., an animal can get hungrier over
time causing the reward value of food pellets to increase
(depending on t).

In general, we assume that Ax,t has two properties:

∂Ax,t

∂x
≤ 0,

∂Ax,t

∂t
≥ 0, (1)

which entail that (i) the outcome values decrease (or
remain constant) as more outcomes are earned, and (ii)
that outcome values do not decrease with the passage of
time. The latter assumption for example entails that, a rat
experiences a higher amount of reward from consuming
food pellets as it gets hungrier over time (even if no action is
taken) due to the baseline metabolic rate at which the subject
turns calories to energy.

Cost

Within the context of free-operant experiments, previous
studies have expressed the cost of earning outcomes as a
function of the delay between consecutive responses made
to earn outcomes. For example, if a rat is required to make
several lever presses to earn outcomes, then the cost will
be higher if the delay between lever presses is short. More
precisely, if the previous response has occurred τ time steps
ago, then the cost of the current lever press will be:

Cτ = a

τ
+ b, (2)
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where a and b are constants (Dayan, 2012; Niv et al.,
2007). b is the constant cost of each lever press, which is
independent of the delay between lever presses whereas the
factor a controls the rate-dependent component of the cost.
Previous research has established that predictions derived
from this definition of cost are consistent with experimental
data (Dayan, 2012; Niv et al., 2007). Note that costs such
as basal metabolic rate and the cost of operating the brain,
although consuming a high portion of energy produced by
the body, are not included in the above definition because
they are constant and independent of response rate and,
therefore, are not directly related to the analysis of response
vigor and choice.

Here, we express cost as a function of rate of earning
outcomes rather than the rate of action execution.4 We
define the cost function Kv as the cost paid at each time
step for earning outcomes at rate v. In the specific case
that the outcome space has one dimension (there is only
one outcome), and under ratio schedules of reinforcement
(fixed-ratio, variable-ratio, random-ratio) in which the
decision-maker is required to perform either precisely or on
average k responses to earn one unit of outcome, the cost
defined in Eq. 2 will be equivalent to:

Kv = ak2v2 + kbv. (3)

See Appendix A for the proof. The cost is composed of two
terms: a linear term (kbv), and a quadratic term (ak2v2).
The linear term is coming from the constant cost of lever
presses, i.e., for earning v amount of outcome, kv responses
are required each at cost b (k is the average number of
responses required for earning one unit of the outcome)
and therefore the total cost will be kbv. The quadratic term
comes from the rate-dependent component of the cost. That
is, earning outcomes are rate v implies that kv responses
were made at one unit of time, and therefore the delay
between responses will be 1/kv. The cost of each response
is inversely proportional to the delay between responses,
and therefore the cost of each response will be akv. Since
kv responses are required to earn one unit of the outcome,
the total cost will be akv × kv = ak2v2, which is the
quadratic term in Eq. 3. Such a quadratic form, independent
of its connections to Eq. 2, is further motivated by the fact
that quadratic forms are typically used to represent motor
costs across optimal control studies (e.g., Berniker, O’Brien,
Kording, & Ahmed, 2013; Salimpour & Shadmehr, 2014;
Uno, Kawato, & Suzuki, 1989), which is partially due to the
its simplicity while providing a reasonable approximation to
more complex cost functions.

4Note that the rate of earning outcomes is a function of the rate of
action execution. For example, if k is the average number of responses
required for earning one unit of the outcome, then the outcome rate is
1/k times the rate of action execution.

This definition of cost implies that it is only a function
of outcome rate and is time-independent (∂Kv/∂t = 0).
Although, in general, it may seem reasonable to assume
that, as time passes within a session, the cost of taking
actions will increase because of factors such as effector
fatigue, here we made a time-independence assumption
based on previous studies showing that factors such as
effector fatigue have a negligible effect on response rate
(McSweeney, Hinson, & Cannon, 1996). In general, we
assume that at least one response is required to earn an
outcome (k > 0), and the cost of earning outcomes is
non-zero (a > 0).

Value

The reward earned in each time step can be calculated as
the reward produced by one unit of each outcome (Ax,t )
multiplied by the amount earned from each outcome, which
will be v.Ax,t . The cost of earning this amount of reward is
Kv, and therefore the net amount of reward earned (in dt

time step) will be:

Lx,v,t = v.Ax,t − Kv. (4)

A decision-making session starts at t = 0 and the total
duration of that session is T . We denote the total reward
gained in this period as S0,T , which is the sum of the net
rewards earned at each point in time:

S0,T =
∫ T

0
Lx,v,t dt . (5)

The quantity S0,T is called the value function, and the goal
of the decision-maker is to find the optimal rate of earning
outcomes that yields the highest value. The optimal rates
that maximize S0,T can be found using different variational
calculus methods, such as the Euler–Lagrange equation or
the Hamilton–Jacobi–Bellman equation (Liberzon, 2011).
The results presented in the next sections are derived using
the Euler–Lagrange equation (see Appendix A for details of
the value function in non-deterministic schedules).

Results

Optimal response vigor

In this section, we use the model presented above to analyze
optimal response vigor when there is one outcome and
one response available in the environment. The analysis
is divided into two sections. In the first section, we
assume that the decision-maker is certain about session
duration, i.e., that the session will continue for T time
units, and we will extend this analysis in the next section
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Fig. 1 Total amount of reward and total cost paid during the session
in two different conditions. Left panel: In the first condition (variable
response rates), response rates are initially high at the beginning of the
session, and then gradually decrease toward the end of the session. In
the second condition, (constant response rates), response rates stay the
same throughout the session. The unit of the y-axis is responses per
minute. Middle panel: Total reward since the beginning of the session

in each condition. In both conditions, the total amount of reward dur-
ing the session is the same. The unit of the y-axis is arbitrary. Right
panel: Total cost paid since the beginning of the session in each con-
dition. The cost paid in the variable response rates condition is higher
than the cost in the constant response rates condition, despite the fact
that the amount of reward in both conditions at the end of the session
is the same. The unit of the y-axis is arbitrary

to a condition in which the decision-maker assumes a
probabilistic distribution of session lengths.

Response vigor when the session duration is known

We maintain the following theorem:

Theorem 1 If the duration of the session is fixed and
the time-dependent change in the reward field is zero
(∂Ax,t /∂t = 0), then the optimal outcome rate is constant
(dv/dt = 0). If the time-dependent change in the reward
field is positive (∂Ax,t /∂t > 0), then the optimal outcome
rate will be accelerating (dv/dt > 0).

See Appendices B, C for a proof of this theorem. Note
that the assumption ∂Ax,t /∂t = 0 implies that the passage
of time has no significant effect on the reward value of
the outcome; e.g., a rat is not getting hungrier during an
instrumental conditioning session,5 which is a reasonable
assumption given the short duration of such experiments
(typically less than an hour). Within this condition, the
above theorem states that the optimal response rate is
constant throughout the session, even under conditions in
which the reward value of the outcome decreases within
the session as a result of earning outcomes, e.g., because of
satiety. As an intuitive explanation for why a constant rate
is optimal, imagine a decision-maker who chooses a non-
constant outcome rate that results in a total of xT outcomes
during the session. If, instead of the non-constant rate, the
decision-maker selects a constant rate v = xT /T , then the
total outcomes earned will be the same as before; however,
the cost will be lower because it is a quadratic function of the

5In an instrumental conditioning experiment an animal learns to
perform specific actions on which the delivery of valued outcomes are
contingent

outcome rate and, therefore, it is better to earn outcomes at a
constant rate (Fig. 1). Nevertheless, although this prediction
is clear enough, it is not consistent with the experimental
results, described next.

Within-session pattern of responses It has been established
that in various schedules of reinforcement, including
variable-ratio (McSweeney, Roll, & Weatherly, 1994) and
fixed-ratio (Bouton, Todd, Miles, León, & Epstein, 2013)
schedules, the rate of responding within a session adopts a
particular pattern: the response rate reaches its maximum
a short time after the session starts (warm-up period), and
then gradually decreases toward the end of the session
(Fig. 2: left panel). Killeen (1994) proposed a mathematical
description of this phenomenon, which can be expressed as
follows (Killeen & Sitomer, 2003):

β = r

δr + 1/α
, (6)

where β is the response rate, δ is the minimum delay
between responses, r is the resulting outcome rate, and α

is called specific activation.6 The model suggests that as
the decision-maker earns outcomes during the session, the
value of α gradually declines due to satiety, which will
cause a decrease in response rate.7 Although this model
has been shown to provide a quantitative match to the
experimental data, it is not consistent with Theorem 1 which
posits that, even under conditions in which outcome values
are changing within a session, the optimal response rate
should not decrease during the session. As a consequence,

6Note that in the original notation in Killeen and Sitomer (2003), α is
denoted by a and β is denoted by b.
7Here satiety refers to both post-ingestive factors (such as blood
glucose level; Killeen, 1995) and/or pre-ingestive factors (for example
sensory specific satiety; McSweeney, 2004).
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Fig. 2 The pattern of within-session response rates (responses per
minute). Left panel: Experimental data. The rate of responding per
minute during successive intervals (each interval is 5 min) in a
variable-ratio (VR) schedule (k = 15; VR15). The figure is adopted

from McSweeney et al. (1994). Right panel: The theoretical pat-
tern of within-session responses predicted by the model in different
conditions. See text for details of each condition

the present model suggests that the cause of any decrease in
the within-session response rate cannot be due purely to a
change in outcome value.

Note, however, that the optimal response rate advocated
by Theorem 1 is not consistent with reports of decreasing
response rates across a session, which implies that some
of the assumptions made to develop the model may not be
accurate. Although the form of the cost and reward functions
is reasonably general, we assumed that the duration of the
session, T , is fixed and known by the decision-maker. In
the next section, we show that relaxing this assumption such
that the duration of the session is unknown, results in much
closer concordance between predictions from the model and
the experimental data.

Response vigor when session duration is unknown

In this section, we assume that the decision-maker is
uncertain about the session duration, which can be either
because the session duration is in fact non-deterministic, or
because of the inherent inaccuracies in interval timing in
animals (Gallistel & Gibbon, 2000; Gibbon, 1977). Since
the session length is unknown, the decision-maker assumes
that the session can end at any point in time (T ) with a
probability distribution function p(T ). In this condition, a
plausible way to calculate optimal response rates is to use
p(T ) to set an expectation as to how long the session will
last and to calculate the optimal response rate based on
that expectation. Based on this, if t ′ time step has passed
since the beginning of the session, then the expected session
duration is ET ∼p(T )[T |T > t ′] and therefore the value of
the rest of the session will be St ′,E[T |T >t ′]. The following
theorem maintains that the optimal rate of outcome delivery
that maximizes the value function is a decreasing function of
the current time in the session t ′, and therefore the optimal
response rates will decrease throughout the session.

Theorem 2 Assuming St ′,E[T |T >t ′] is the value function and
that (i) the time dependent change in the reward field is zero
(∂Ax,t /∂t = 0), (ii) the probability that the session ends at
each point in time is non-zero (p(T ) > 0), (iii) values of
outcomes decrease as more are consumed (∂Ax,t /∂x < 0),
then the optimal rate of outcome delivery is a decreasing
function of t ′:

dv∗
t ′

dt ′
< 0. (7)

Furthermore, if conditions (i) and (ii) hold and the values
of outcomes are constant (∂Ax,t /∂x = 0), then the optimal
outcome rate is constant (dv/dt = 0).

See Appendices B, D for the proof of this theorem.
Theorem 2 stems from two bases: (i) the optimal rate of
outcome delivery is a decreasing function of session length,
i.e., when the session duration is long the decision-maker
can afford to earn outcomes more slowly, and (ii) when
the session duration is unknown, expected session duration
should increase with the passage of time (Fig. 3). This
phenomenon, which has been elaborated within the context
of delayed gratification (McGuire & Kable, 2013; Rachlin,
2000), is more significant if the decision-maker assumes a
heavy-tail distribution over T . Putting (i) and (ii) together
implies that the optimal response rate will decrease with
the passage of time. Importantly, this suggests, from a
normative perspective, that uncertainty about the session
duration and a decrease in the value of the outcomes
are both necessary to explain within-session decreases in
response rates.

For simulation of the model, we characterized the session
duration using a Generalized Pareto distribution following
McGuire and Kable (2013). Simulations of the model
are depicted in Fig. 2: right panel. The simulations were
obtained using analytical equations derived from Theorem 2
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Fig. 3 The expected length of the session changes as time
passes within the session. The red areas in the panels show
the probability distribution function of the length of the session
(p(T )). The vertical dashed-lines represent the expected length
of the session (ET ∼p(T )[T |T > t ′]), and the vertical solid-lines repre-
sent the current time in the session (t ′). Left panel: at the beginning of

the session (t ′ = 0), the animal expects the session to last for 60 min.
After 15 min have passed since the beginning of the session (middle
panel; t ′ = 15), the expected duration of the session becomes 110 min.
As more time passes (right panel; t ′ = 30), the expected duration of
the session increases to 160 min. The unit of the x-axes in the panels is
minutes

and trial-by-trial updates of the expected session length (see
Appendix D.2 for details). Simulations show three different
conditions. In condition (i), the session duration is known
and, as the figure shows, irrespective of whether the value of
outcomes is decreasing or fixed, the optimal response rate is
constant. In condition (ii), session duration is unknown, but
the value of outcomes is constant. Again in this condition
the optimal response rate is constant. In condition (iii),
session duration is unknown and the reward value decreases
as more outcomes are consumed. Only in this condition,
consistent with experimental data and Theorem 2, response
rates decrease as time passes. Therefore, the simulations
confirm that a decrease in outcome value alone is not
sufficient to explain within-session response rates and
that uncertainty about session duration is also required
to reproduce a pattern of responses consistent with the
experimental data. Note that a similar pattern can also be
obtained using any other distribution that assigns a non-zero
probability to positive values of T .

Relationship to temporal discounting There are, however,
alternative explanations available based on changes in
outcome value. One candidate explanation is based on the
temporal discounting of outcome value according to which
the value of future rewards is discounted compared to more
immediate rewards. Typically, the discount value due to
delay is assumed to be a function of the interaction of
delay and outcome value. If, at the beginning of the session,
outcome values are large (e.g., because a rat is hungrier),
then any discount produced by selecting a slow response
rate will be larger at that point than later in the session when
the value of the outcome is reduced (e.g., due to satiety)
and so a delay will have less impact. It could be argued,
therefore, that it is less punitive to maintain a high response
rate at the beginning of the session to avoid delaying
outcomes and then to decrease response rate as time passes
within the session. As such, temporal discounting predicts
decreases in within-session response rates consistent both

with experimental observations and with the argument that
outcome value decreases within the session (e.g., the satiety
effect).

Prediction Although plausible, such explanations make
very different predictions compared to the model. The
most direct prediction from the model is that introducing
uncertainty into the session duration without altering the
average duration should nevertheless lead to a sharper
decline in response rate within the session; e.g., if for one
group of subjects the session lasts exactly 30 min whereas
for another group the session length is uncertain and can
end at any time (but ends on average after 30 min), then the
model predicts that the response rate in the second group
will be higher at the start and decrease more sharply than in
the first group. This effect is not anticipated by the temporal
discounting account of the effect.

Another prediction of the model is with regard to the
effect of training on within-session response rates. By
experiencing more training sessions, subjects should be
able to build a more accurate representation of the session
length. This implies that, for this case, the expected length
of the session will remain relatively unchanged as time
passes within a session and, therefore, the decrement in
within-session response rates should be predicted to grow
smaller with more training. Consistent with this prediction,
some experimental results indicate that the gap between the
highest and the lowest response rates within a session does
decrease with more training (McSweeney & Hinson, 1992,
Figure 11)8 while other studies show that the gap becomes

8Note that in these experiments, animals were trained on a variable-
interval schedule. In a variable-interval schedule of reinforcement, it
is the time period since the last outcome delivery that determines
whether the next response will be rewarded, which is in contrast to
ratio schedules where outcome delivery depends on the number of
responses. The current model and theorems apply to ratio schedules,
and therefore, this prediction can be tested more accurately using a
ratio procedure.
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Fig. 4 Effect of response cost on response rates. Left panel: Empiri-
cal data. Inter-response intervals (in seconds) when the force required
to make a response is manipulated. Figure is adopted from Adair and

Wright (1976). Right panel: Model prediction. Inter-response interval
(in seconds; equal to the inverse of response rates) as a function of cost
of responses (b)

larger as training proceeds (Bouton, Todd, Miles, León, &
Epstein, 2013). It is worth noting that in the former study
the shaping sessions were excluded when comparing early
and late training sessions, while in the latter study they were
not. Based on this, further analysis and experimental studies
are required to test this prediction accurately.

Effect of experimental parameters

Optimal response rates predicted by the model are affected
by experimental parameters (e.g., reward magnitude), which
can be compared against experimental data. In general, in
an instrumental conditioning experiment, the duration of
the session can be divided into three sections: (i) outcome
handling/consumption time, which refers to the time that an
animal spends consuming the outcome, (ii) post-reinforcer
pause, which refers to the pause that occurs after consuming
the outcome and before starting to make the next response
(e.g., lever press), something consistently reported in studies
using a fixed-ratio schedule, and (iii) run time, which
refers to the time spent making responses (e.g., lever
pressing). Experimental manipulations have been shown to
have different effects on the duration of these three sections
of the session (see below), and decisions about whether each
of these sections is included when calculating response rates
can affect the results. The predictions of the current model
are with regard to response rate; whether manipulating
experimental parameters should be expected to change the
two other measures (outcome handling and post-reinforcer
pause) cannot be predicted by the current model. In the
following sections, we briefly review the currently available
data from instrumental conditioning experiments and their
relationship to predictions of the model. Simulations are
obtained using analytical equations derived in Theorem 1
(see Appendix D.3 for details).9

9Note that, for simplicity, the simulations in this section are made
under the assumption that the session duration is fixed.

The effect of response cost (a and b) Experimental studies
in rats working on a fixed-ratio schedule (Alling & Poling,
1995) indicate that increasing the force required to make
responses causes increases in both inter-response time and
the post-reinforcement pause. The same trend has been
reported in Squirrel monkeys (Adair & Wright, 1976).
Consistent with this observation the present model predicts
that increases in the cost of responding, for example by
increasing the effort required to press the lever (increases in
a and/or b), lead to a lower rate of earned outcomes and a
lower rate of responding (Fig. 4). The reason for this is that,
by increasing the cost, the response rate for each outcome
should slow in order to compensate for the increase in the
cost and so maintain a reasonable gap between the reward
and the cost of each outcome.

The effect of ratio-requirement (k ) Experimental studies
mainly suggest that the rate of earned outcomes decreases
with increases in the ratio-requirement (Aberman &
Salamone, 1999; Barofsky & Hurwitz, 1968), which is
consistent with the general trend in the optimal rate of
outcome delivery implied by the present model (see below).

Experimental studies on the rate of responding on fixed-
ratio schedules indicate that the post-reinforcement pause
increases with increases in the ratio-requirement (Ferster
& Skinner, 1957, Figure 23) (Felton & Lyon, 1966;
Powell, 1968; Premack, Schaeffer, & Hundt, 1964). In
terms of overall response rates, some experiments report
that response rates increase with increases in the ratio-
requirement up to a point beyond which response rates will
start to decline, in rats (Barofsky & Hurwitz, 1968; Mazur,
1982; Kelsey & Allison, 1976), pigeons (Baum, 1993) and
mice (Greenwood, Quartermain, Johnson, Cruce, & Hirsch,
1974), although other studies have reported inconsistent
results in pigeons (Powell, 1968), or a decreasing trend in
response rate with increases in the ratio-requirement (Felton
& Lyon, 1966; Foster, Blackman, & Temple, 1997). The
inconsistency is partly due to the way in which response
rates are calculated in the different studies; for example
in some studies outcome handling and consumption time
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are not excluded when calculating response rates (Barofsky
& Hurwitz, 1968), in contrast to other studies (Foster
et al., 1997). As a consequence, the experimental data
regarding the relationship between response rate and the
ratio-requirement is inconclusive.

With regard to this issue, the present model predicts
that the relationship between response rate and the ratio-
requirement is an inverted U-shaped pattern (Fig. 5: left
panel), which is consistent with the studies mentioned
previously, depending on the value of other experimental
parameters. The model makes an inverted U-shaped
prediction because, under a low ratio-requirement, the cost
is generally low and, therefore, as the ratio-requirement
increases, the decision-maker will make more responses
to compensate for the drop in the amount of reward. In
contrast, when the ratio-requirement is high, the cost of
earning outcomes is high and the margin between the cost
and the reward of each outcome becomes significantly
tighter as the ratio-requirement increases. The margin can,
however, be loosened by decreasing the response rate (see
Appendix D.2 for the exact source of this effect in the
model).

The Effect of deprivation level Experimental studies that
have used fixed-ratio schedules suggest that response rates
increase with increases in deprivation (Chapter 4, Ferster
& Skinner, 1957; Sidman & Stebbins, 1954). However,
such increases are mainly due to decreases in the post-
reinforcement pause, and not due to the increases in the
actual rate of responding after the pause (see Pear, 2001,
Page 289 for a review of other reinforcer schedules; see
for example Eldar, Morris, & Niv, 2011 for the case of
variable-interval schedules). The model predicts that, with
increases in deprivation, the rate of responding and the
rate of earned outcomes will increase linearly (Fig. 5:
middle panel). The rate of increase is, however, negligible
when the outcomes are small and the generated satiety
after earning each outcome is insignificant. This provides a
potential reason why the effect of deprivation on response
rate has not previously been observed in experimental data.

Similarly, when the session duration is long, even under
high deprivation, sufficient time is available to earn enough
reward and become satiated, and therefore the effect of
deprivation levels on response rate will be minor.

The effect of reward magnitude Some studies show that
post-reinforcement pauses increase as the magnitude of
the reward increases (Powell, 1969), whereas other studies
suggest that the post-reinforcement pause decreases (Lowe,
Davey, & Harzem, 1974); however, in this later study
the magnitude of reward was manipulated within-session
and a follow-up study found that, at a steady state, the
post-reinforcement pause increases with increases in the
magnitude of the reward (Meunier & Starratt, 1979).
Reward magnitude does not, however, have a reliable effect
on overall response rate (Keesey & Kling, 1961; Lowe
et al., 1974; Powell, 1969). Regarding predictions from the
model, the effect of reward magnitude on earned outcome
and response rates is, again, predicted to take an inverted
U-shaped relationship (Fig. 5: right panel), and, therefore,
depending on the value of the parameters, the predictions
of the model are consistent with the experimental data.
The model makes a U-shaped prediction because, when the
reward magnitude is large then, given high response rates,
the animals will become satiated quickly and, therefore, the
reward value of future outcomes will decrease substantially
if the animal maintains this high response rate. As a
consequence, under a high reward magnitude condition, an
increase in reward will cause response rates to decrease.
Under a low reward magnitude condition, however, satiety
has a negligible effect and a high response rate ensures that
sufficient reward can be earned before the session ends.

Summary Table 1 shows the summary of the predictions
of the model presented here and also the predictions of
the model in Niv (2007) with regard to the effect of
experimental parameters. The predictions of the models are
different with respect to the effect of reward magnitude
on response rates. The previous work predicts that higher
reward magnitudes lead to higher response rates, whereas

Fig. 5 Left panel: The effect of ratio-requirement on the response rate (responses per minute). Middle panel: The effect of deprivation level on
response rates. Right panel: The effect of the reward magnitude on response rates
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Table 1 Summary of the predictions of the current model with regard to the experimental parameters

Experimental parameters Current model Niv (2007)

Increase in response cost Lower response rates (Fig. 4: right panel) Lower response rates (page 59; Niv, 2007)

Increase in ratio-requirement Inverted U-shaped (Fig. 5: left panel) Lower response rates or inverted U-shaped

(Figure 2.10a; Niv, 2007)

Increase in deprivation levelsa Higher response rates (Fig. 5: middle panel) Higher response rates (Figure 2.10d; Niv, 2007)

Increase in reward magnitude Inverted U-shaped (Fig. 5: right panel) Higher response rates (Figure 2.10d; Niv, 2007)

The table also presents the predictions of Niv (2007)
aIncreases in the deprivation levels are assumed to increase the reward magnitude

the study here predicts an inverted U-shaped relationship
between them, i.e., further increases in reward magnitude
when it is already high, will lead to lower response rates.
The reason is that according to the current study, high
reward magnitudes cause satiety and thus diminish outcome
values, which can support lower response rates. This effect
of satiety (within a session) is not explicitly modeled in
the previous work and thus the predictions of the two
frameworks differ.

Optimal choice and response vigor

In this section, we address the choice problem, i.e., the case
where there are multiple outcomes available in the environ-
ment and the decision-maker needs to make a decision about
the response rate along each outcome dimension. An exam-
ple of this situation is a concurrent free-operant procedure in
which two levers are available and pressing each lever pro-
duces an outcome on a ratio schedule. Unlike the case with
single outcome environments, the optimal rate of earning
outcomes is not necessarily constant and can take different
forms depending on whether the reward field is a conserva-
tive field or a non-conservative field, and whether the costs
of responses along the outcome dimensions are independent
of each other. Below, we derive the optimal choice strategy
in each condition.

Conservative reward field

A reward field is conservative if the amount of reward
experienced by consuming different outcomes does not
depend on the order of consumption and depends only
on the number of each outcome earned by the end of
the session. This property holds in two conditions (i)
when the value of each outcome is unrelated to the prior
consumption of other outcomes; and (ii) the consumption
of an outcome affects the value of other outcomes and
this effect is symmetrical. As an example of condition (i),
imagine an environment with two outcomes in which one of
the outcomes only satisfies thirst and the other only satisfies

hunger.10 Here, consumption of one of the outcomes will
not affect the amount of reward that will be experienced
by consuming the other outcome and, therefore, the total
reward during the session does not depend on the order
of choosing the outcomes. As an example of condition
(ii), imagine an environment with two outcomes in which
both outcomes satisfy hunger and, therefore, consuming
one of the outcomes reduces the amount of future reward
produced by the other outcome. Here, if the effect of the
outcomes on each other is symmetrical, i.e., consuming
outcome O1 reduces the reward elicited by outcome O2 by
the same amount that consuming outcome O2 reduces the
reward elicited by outcome O1, then it will not matter which
outcome is consumed first and the total reward during the
session will be independent of the chosen order. As such,
the reward field will be conservative.

Under the conditions that a reward field is conservative,
the optimal response rate will be constant for each outcome
relative to the other. Intuitively, this is because, in terms
of the total rewards per session, the only thing that matters
is the final number of earned outcomes and, therefore,
there is no reason why the relative allocation of responses
to outcomes should vary within the session. The actual
response rate for each outcome will, however, depend on
whether the costs of the outcomes are independent, a point
elaborated in the next section.

Conservative reward field and independent response cost
The costs of various outcomes are independent if the
decision-maker can increase their work for one outcome
without affecting the cost of other outcomes. As an example,
imagine a decision-maker that is using their left hand to
make responses that earn one outcome and their right-hand
to make responses that earn a second outcome. In this
case, the independence assumption entails that the cost of
responding with one or other hand is determined by the

10In this example we assumed that hunger and thirst are independent
motivational drives.
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response rate on that hand; e.g., the decision-maker can
increase or decrease rate of responding on the left hand
without affecting the cost of responses on the right hand.
More precisely, the independence assumption entails that
the Hessian matrix of Kv is diagonal:

∂2Kv

∂vi∂vj

= 0, i �= j . (8)

In this situation, even if some of the outcomes have a
lower reward or a higher cost (inferior outcomes) compared
to other outcomes (superior outcomes), it is still optimal
to allocate a portion of responses to the inferior outcomes.
This is because responding for inferior outcomes has no
effect on the net reward earned from superior outcomes and,
therefore, as long as the response rate for inferior outcomes
is sufficiently low that the reward earned from them is more
than the cost paid, responding for them is justified. The
portion of responses allocated to each outcome depends,
however, on the cost and reward of each outcome. We
maintain the following theorem:

Theorem 3 If (i) the reward field is conservative, (ii) the
time-dependent term of the reward field is zero (∂Ax,t /∂t =
0), and (iii) the cost function satisfies Eq. 8, then the optimal
rate of earning outcome v∗ will be constant (dv/dt = 0)
and satisfies the following equation:

∂Kv∗

∂v∗ = AT v∗,T . (9)

See Appendices E, F.1 for the proof and for the
specification of optimal responses. As an example, imagine
a concurrent fixed-ratio schedule in which a subject is
required to make k responses with the left hand to earn O1,
and lk responses with the right hand to earn O2, and both
outcomes have the same reward properties. According to
Theorem 3, the optimal response rate for O1 (the outcome
with the lower ratio-requirement) will be l times greater than
the response rate for the second outcome O2. Figure 6: left
panel independent cost condition shows the simulation of
the model and the optimal trajectory in the outcome space.
As the figure shows, the rate of earning O1 is higher than
O2, however, the proportion of each outcome of the total
remains the same throughout the session.

Relationship to probability matching The above results are
generally in line with the probability matching notion,
which states that a decision-maker allocates responses to
outcomes based on the ratio of responses required for
each outcome (Bitterman, 1965; Estes, 1950). Probability
matching is often argued to violate rational choice theory
because, within this theory, it is expected that a decision-
maker works exclusively for the outcome with the higher
probability (i.e., the lower ratio-requirement). However,

Fig. 6 Left panel: Optimal trajectory in a conservative reward field.
EarningO1 requires k responses and earningO2 requires lk responses.
Initially, the amount of earned outcome is zero (starting point is at
point [0, 0]), and the graph shows the trajectories that the decision-
maker takes in two different conditions corresponding to when the
costs of outcomes are independent, and when the costs are dependent
on each other. Right panel: The optimal trajectories in the outcome
space when the reward field is non-conservative. The graph shows the
optimal trajectory in the conditions that the session duration is short
(T = 7), medium (T = 15.75), and long (T = 23).O1 generates more
reward than O2

based on the model proposed here, probability matching is
the optimal strategy when the cost of actions is independent,
and therefore consistent with rational decision-making.

Relationship to matching law The matching law refers to
the observation that the rate of responses for different
actions is proportional to the rate of rewards obtained from
the corresponding actions (Herrnstein, 1961) . For example,
if v1 and v2 are the response rates for two different actions,
and z1 and z2 refer to the rate of rewards obtained from each
action, then the matching law implies that,

v1

v2
= z1

z2
. (10)

In contrast to the matching law which is about
rewards obtained from each action, in probability matching
the responses are allocated to actions according to the
probability of rewards being available for each action. In
this respect, these two behavioral phenomena are different.
For example, although maximization (exclusively selecting
the action with the higher reward probability/lower ratio-
requirement) is inconsistent with probability matching, it
is indeed consistent with the matching law (because in
maximization 100% of responses are made on one of the
actions and 100% of rewards are obtained from that action).
The results that we obtained in the previous sections are
related to the rate at which outcomes are available on
each action, and therefore, they are not directly related to
the matching law. Furthermore, the matching law mostly
applies to the case of variable-interval schedules,11 and is

11In variable-interval schedules, the subject needs to wait a certain
amount of time (according to a probability distribution) before being
able to obtain the next reward by selecting actions.
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not particularly informative in the case of ratio schedules,
which are the focus of the current analysis. This is
because in ratio schedules, the rate of earning rewards from
actions is directly related to the rate of responding on the
corresponding actions no matter how the decision-maker
distributes responses over actions.

The relationship to Kubanek (2017) Typically, in computa-
tional models of the matching law and probability matching,
the effect of effort, i.e., the cost of obtaining rewards, is
not explicitly modeled (e.g., Iigaya & Fusi, 2013; Loewen-
stein, Prelec, & Seung, 2009; Sakai & Fukai, 2008). An
exception can be found in the study of Kubanek (2017)
in which the matching law is regarded as a consequence
of the diminishing returns associated with variable-interval
schedules of reinforcement. In such schedules, outcome rate
grows almost proportional to response rate when response
rates are low, whereas outcome rate saturates when response
rates are high (because in these schedules a certain period
of time has to pass before the next outcome can be earned)
and, therefore, to produce a slight increase in outcome
rate will require a significant increase in response rate.
Based on this, outcomes are more expensive to earn at
high response rates, which justifies allocating a portion of
responses to inferior actions, on which the outcomes are
not yet saturated and are still (relatively) cheap. As such,
in variable-interval schedules we would expect animals
to match rather than respond exclusively on the superior
action, and indeed, Kubanek (2017) showed that the match-
ing law is the optimal strategy when faced with these
schedules.

This prediction for variable-interval schedules is essen-
tially the same as the prediction generated in the current
study for ratio schedules (and independent response costs)
even though, unlike variable interval schedules, the out-
come rates are non-saturating. This is because, although on
ratio schedules outcome rates are non-saturating and pro-
portional to response rates, the cost of earning outcomes
increases as response rates increase due to the quadratic
cost of responses (as implied in Eq. 3), meaning that it
is better to limit response rates even on superior actions.
As such, although the model proposed here is focused
on ratio schedules and the one in Kubanek (2017) on
variable-interval schedules, both approach optimal deci-
sions based on the fact that the outcomes are more expensive
when response rates are high; and whereas in the for-
mer it is due to the quadratic cost function, in the latter
it is due to the properties of interval schedules, and in
this respect the two studies are complementary. In addi-
tion, the model proposed here extends previous work by
addressing the role of changes in outcome value on choice,
in addition to the role that the cost of earning outcomes
plays.

Conservative reward field and dependent response cost In
this section we assume that the cost of responses for an
outcome is affected by the rate of responding required to
earn other outcomes. In other words, what determines the
cost is the delay between subsequent responses either for the
same or for a different outcome; i.e., the cost is proportional
to the rate of earning all of the outcomes. In concurrent free-
operant procedures, this assumption entails, for example,
that the cost of pressing, say, the right lever is determined
by the time that has passed since the last press on either the
right or a left lever. In this condition, the optimal strategy is
maximization; i.e., to take the action with the higher reward
(or lower ratio-requirement) and to stop taking the other
action (see Appendix G). The reason is because, unlike the
case with independent costs, allocating more responses to
earn an inferior outcome will increase the cost of earning
superior outcomes and, therefore, it is better to pay the
cost for the superior outcome only, which requires fewer
responses per unit of outcome.

For example, under a concurrent fixed-ratio schedule in
which an animal needs to make k responses on the left
lever to earn O1, and lk responses on the right lever to
earn O2 (O1 and O2 have the same reward properties),
the optimal response rate will be a constant response rate
on the left lever and a zero response rate on the right
lever. Figure 6: left panel dependent cost condition shows
a simulation of the model and the optimal trajectory in
outcome space, which shows that the subject only earns O1.
Note the difference between this example, and the example
mentioned in the previous section is that, here the costs of
earning outcomes are not independent, while in the previous
section we assumed that the costs of earning O1 and O2 are
independent of each other.

Prediction One way of testing the above explanation for
maximization and matching strategies is to compare the
pattern of responses when two different effectors are used to
make responses for the outcomes vs. when a single effector
is being used to earn both outcomes. In the first condition,
the costs of the two outcomes are independent of each
other whereas in the second condition they are dependent
on each other. As a consequence, the theory predicts that,
in the first condition, response rates will reflect probability
matching whereas in the second condition they will reflect
the maximization strategy.

Probability matching and maximization As such, whether
the outcome rate reflects a probability matching or a
maximization strategy depends on the cost function and,
in concurrent free-operant procedures, the cost that reflects
the maximization strategy is more readily applicable.
Regarding the experimental data, evidence from concurrent
instrumental conditioning experiments in pigeons tested
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using variable-ratio schedules (Herrnstein & Loveland,
1975) is in-line with the maximization strategy and
consistent with predictions from the model.

Within the wider scope of decision-making tasks, some
studies are consistent with probability matching, whereas
other studies provide evidence in-line with a maximization
strategy (see Vulkan, 2000 for a review). However, many
of these latter studies use discrete-trial tasks in which,
unlike free-operant tasks (which are the focus of the
current analysis), actions are typically disjoint and therefore
unlikely to convey a rate-dependent cost. Even within the
domain of free-operant tasks, for the cost of actions to
be independent of each other the decision-maker should
be able to respond using effectors independent of each
other (e.g., left hand and right hand), otherwise, as argued,
probability matching will no longer be the optimal strategy.
In spite of this, some evidence suggests that probability
matching occurs even in settings where the task is discrete-
trial or when responses are not independent. In these
settings, observed probability matching will be unrelated
to the current analysis and might stem from other factors
such as cognitive efforts and limitations (e.g., Schulze &
Newell, 2016), tendency of the subjects to find patterns in
random sequences (e.g., Gaissmaier & Schooler, 2008), or
it could be the effect of competition in certain environments
(Schulze, van Ravenzwaaij, & Newell, 2015).

Non-conservative reward field

A reward field is non-conservative if the total amount
of reward experienced during the session depends on the
order of the consumption of the outcomes. Imagine an
environment with two outcomes say O1 and O2, where
both outcomes have the same motivational properties, e.g.,
consumption of one unit of either O1 or O2 decreases hunger
by one unit, however, they generate different amounts of
rewards, e.g., one unit of O1 generates more reward than one
unit of O2. As an example, let’s denote the amount of earned
O1 and O2 by x1 and x2 respectively. Based on this, the
current food deprivation level will be H −x1−x2, where H

is the initial deprivation level. Here, although both outcomes
have the same effect on reducing the deprivation level, in a
non-conservative reward field, one of the outcomes (O1 in
this example) generates more reward than the other:

Ax,t =
⎡
⎢⎣l(H − x1 − x2)︸ ︷︷ ︸

O1

, H − x1 − x2︸ ︷︷ ︸
O2

⎤
⎥⎦ , (11)

which implies that the reward generated by both outcomes
is proportional to the current food deprivation level, and the
reward of O1 is l times greater than the reward generated by
O2. Within such an environment, the total amount of reward

experienced depends on the order of consuming outcomes.
This is because if hunger is high then consuming O1

generates significantly more reward than O2 and, therefore,
early in the session it is better to allocate more responses to
O1; whereas later in the session when hunger is presumably
lower and the difference in the value of the outcomes is
small, responses for O2 can gradually increase. If we reverse
this order, i.e., first O2 is consumed and then O1, then
early consumption of O2 will cause satiety and the decision-
maker will lose the chance to experience high reward from
O1 when hungry. As such, the amount of experienced
reward depends on the order of consuming the outcomes
and, based on the above explanation, a larger amount of
reward can be earned during the session if more responses
are allocated to the outcome with the higher reward at the
beginning of the session (see Appendix H). Figure 6: right
panel shows the simulations of the model under different
session durations (simulations are obtained using analytical
solutions). In each simulation, at the beginning of the
session the initially earned outcomes are zero and each line
in the figure shows the trajectory of the amount earned from
each outcome during the session. As the figure shows, in all
conditions the rate of earning O1 is higher than O2 and this
difference is more apparent under long session durations, in
which a large amount of reward can be gained during the
session and it makes a significant difference to earn O1 first.

Prediction A test of the above prediction would involve
an experiment in which the subject is responding for two
food outcomes containing an equal number of calories
(and therefore having the same impact on motivation)
but with different levels of the desirability (e.g., having
different flavors) and, therefore, having a different reward
effect. Theorem A3 predicts that, if the session duration
is long enough, early in the session the response rate for
the outcome with the greater desirability will be higher
whereas, later in the session, responses for the other
outcome will increase.

Relationship to motivational drives Formally, a reward
field is conservative if there exists a scalar field, denoted by
Dx, such that:

Ax,t = −∂Dx

∂x
. (12)

Keramati and Gutkin (2014) conceptualized Dx as the
motivational drive for different outcomes and provided a
definition of motivational drives as deviations of the internal
state of a decision-maker from their homeostatic set-points.
Based on this definition, according to Eq. 12, rewards are
generated as a consequence of reductions in drive and,
more precisely, the reward field is the amount of change
in the motivational drive that is due to the consumption
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of one unit of each outcome. It can be shown that if a
reward field satisfies Eq. 12 then the amount of reward
experienced in a session depends on the total number of
earned outcomes and, therefore, it is conservative. For
the case of non-conservative reward fields, the drive for
earning an outcome not only depends on the number of
earned outcomes, but also on the order in which they were
earned. However, Dx only depends on the number of earned
outcomes (dependency on x) and not on their order, and
because of this it cannot be defined in non-conservative
reward fields. In this respect, the current study extends
the model proposed by Keramati and Gutkin (2014) to
cases where rewards do not correspond to any underlying
motivational drive.

Conclusions and Discussion

Computational models of action selection are essential
for understanding decision-making processes in humans
and animals, and here we extended these models by
providing a general analytical solution to the problem of
response vigor and choice. Table 2 shows the summary
of the results obtained for different conditions. The results
provide (i) a normative basis for commonly observed
decrements in within-session response rates, and (ii) a
normative explanation for probability matching and reward
maximization, as two commonly observed choice strategies.

Relationship to previous models of response vigor There
are two significant differences between the model proposed
here and previous models of response vigor (Dayan, 2012;
Niv et al., 2007). Firstly, although the effect of between-
session changes in outcome values on response vigor was
addressed in previous models (Niv, Joel, & Dayan, 2006),

the effects of on-line changes in outcome values within a
session were not addressed. On the other hand, the effect
of changes in outcome value on the choice between actions
has been addressed in some previous models (Keramati &
Gutkin, 2014), however their role in determining response
vigor has not been investigated. We address such limitations
directly in this model.

Secondly, previous work conceptualized the structure
of the task as a semi-Markov decision process in which
taking an action leads to outcomes after a delay. Based
on that, the optimal actions and the delay between them
that maximize the average reward per unit of time (average
reward) were derived. Here, we used a variational analysis
to calculate the optimal actions that maximize the reward
earned within the session. One benefit of the approach
taken in the previous works is that it extends naturally
to a wide range of instrumental conditioning schedules
such as interval schedules, whereas the extension of the
model proposed here to the case of interval schedules is
not trivial. Optimizing the average reward (as adopted in
previous work) is equivalent to the maximization of reward
in an infinite-horizon time scale; i.e., the session duration
is unlimited. In contrast, the model used here explicitly
represents the duration of the session which, as we showed,
plays an important role in the pattern of responses.

In addition to the predictions of the current model,
Table 2 shows the predictions of previous models of
response vigor in each condition. The cases that involve
non-constant reward fields are not addressed in previous
work and, therefore, their predictions are not mentioned in
the table. In the case of environments in which one outcome
type is available (n = 1), and the reward field is constant,
the prediction of the previous works is that the response
rates will be constant, which is the same as the prediction
of the current model (Table 2 rows #1). In the case of

Table 2 Summary of the results

n T Reward field Cost function Response rates Thrm Pre. works

1 n = 1 Known Constant – Constant 1 Constant

2 n = 1 Known Non-constant – Constant/Increasing 1 –

3 n = 1 Unknown Constant – Constant 2 Constant

4 n = 1 Unknown Non-constant – Decreasing 2 –

5 n > 1 Known Conservative Independent Prob. matching 3 –/Prob. matching

6 n > 1 Known Conservative Dependent Maximization A2 –/Maximization

7 n > 1 Known Non-conserv Independent See text A3 –

‘n’ refers to the number of dimensions of the outcome space and ‘response rates’ refers to the optimal response rates obtained by the corresponding
theorem. ‘constant’ reward field implies that the values of the outcomes do not change as more outcomes are consumed. ‘non-constant’ reward
field implies that the values of the outcomes decrease as more outcomes are consumed. ‘known’ session length implies that the decision-maker is
certain about the session length (T ). ‘unknown’ session length implies that the decision-maker is uncertain about the session length. ‘non-conserv’
refers to non-conservative reward field. ‘prob. matching’ refers to probability matching. ‘pre. works’ refers to ‘previous works’. ‘Thrm’ refers to
the corresponding theory in each case
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environments with more than one outcome type (n = 2),
and constant reward fields, we expect the prediction from
previous research to be optimal in both ‘dependent’ and
‘independent’ cost conditions (Table 2 row #6, #7). This is
because, in these conditions, the optimal response rates are
constant within a session, and therefore the previous models
should be able to learn them, in which case their predictions
will be the same as the predictions from the current model.

Relationship to principle of least action A basic assumption
that we made here is that the decision-maker takes actions
that yield the highest amount of reward. This reward
maximization assumption has a parallel in the physics
literature known as the principle of least action, which
implies that among all trajectories that a system can take,
the true trajectories are the ones that minimize the action.
Here action has a different meaning from that used in the
psychology literature, and it refers to the integral of the
Lagrangian (L) along the trajectory. In the case of a charged
particle with charge q and mass m in a magnetic field B, the
Lagrangian will be:

L = 1

2
mv2 + qv.A, (13)

where A is the vector potential (B = ∇ ×A). By comparing
Eq. 13 with Eqs. 4 and 5, we can see that the reward
field Ax,t corresponds to the vector potential, and the term
Kv corresponds to 1

2mv2 by assuming m = 2ak2, and
b = 0. This parallel can provide some insights into the
properties of the response rates. For example, it can be
shown that when the Lagrangian is not explicitly dependent
on time (time-translational invariance), which here implies
that ∂Ax,t /∂t = 0, then the Hamiltonian (H , or energy) of
the system is conserved. The Hamiltonian in the case of the
system defined in Eq. 4 (with single outcome) is:

H = Kv − ∂Kv

∂v
v

= −ak2v2 (using Eq. 3).

Conservation of the Hamiltonian implies that ak2v2 (and
therefore v) is constant (response rate is constant), as stated
by Theorem 1. Further exploration of this parallel can be an
interesting future direction.
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Appendix A: Value in non-deterministic
schedules

The value of a trajectory in the outcome space is the
sum of the net amount of rewards that can be earned
during a session. However, the amount of reward earned
during a session can be non-deterministic, as for example
in the case of variable-ratio and random-ratio schedules of
reinforcement, actions lead to outcomes probabilistically.
Similarly, the cost of earning outcomes will also be non-
deterministic, since the number of responses required to
earn outcomes is non-deterministic. Let’s denote the cost of
earning outcomes under such non-deterministic schedules
by K ′

v. Using this, we define the value function as the sum
of the expected net amount of rewards that will be earned
during a session:

S0,T =
∫ T

0
E[v.Ax,t − K ′

v]dt =
∫ T

0
Lx,v,t dt, (A.1)

where the expectation is w.r.t the number of earned
outcomes along each outcome dimension during dt time
step. Following the above definition, we have:

Lx,v,t = E[v.Ax,t − K ′
v], (A.2)

where Lx,v,t is the expected net reward earned in dt time
step. In the main text and in the following sections, E[v] is
denoted by v for simplicity of notation. By replacing v by
E[v] in Eq. 4 we get:
Lx,v,t = E[v].Ax,t − KE[v]. (A.3)

In the main text, Eq. A.3 (Eq. 4 in the main text) was
used instead of Eq. A.2, and the aim of this section is to
show that Eqs. A.3 and A.2 are equivalent. We first consider
environments with one-dimensional outcome spaces, and
then we extend it to the case of environments with multi-
dimensional outcome spaces. We maintain the following
theorem:

Theorem A1 Assume that the cost of one response, given
that the delay since the last response is τ , is as follows:

Cτ = a/τ + b. (A.4)

Furthermore, assume that on average, or exactly, k

responses are required to earn one unit of the outcome, and
r is the number of outcomes earned. Then we have:

Lx,v,t = Er [v]Ax,t − KEr [v], (A.5)
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where

Kv = vk(kav + b). (A.6)

Proof We first provide an intuitive explanation for why the
cost defined in Eq. A.4 is the same as the cost defined in
Eq. A.6 in the case of fixed-ratio schedules of reinforcement
(i.e., exactly k responses are required to earn an outcome).
Earning the outcome at rate v implies that the time it takes
to earn the outcome is 1/v, and since k responses have been
executed in this period, the delay between responses is:

τ = 1

kv
, (A.7)

and therefore using Eq. A.4 (Eq. 2 in the main text), the cost
of making one response will be akv + b. Since k responses
are required for earning each outcome, the total cost of
earning one unit of the outcome will be k times the cost
of one response, which will be k(akv + b). Since the total
amount of outcome earned is vdt , the total cost per unit of
time will be:

Kv = k(akv + b)vdt

dt
= vk(akv + b), (A.8)

which is equivalent to Eqs. 3 and A.6.
We now show that Eqs. A.5 and A.2 are equivalent in

order to prove Theorem A1. Equation A.2 has two terms. As
for the first term, Ax,t can be assumed to be constant in dt

time step, and therefore we have:

Er [vAx,t ] = Er [v]Ax,t . (A.9)

As for the second term we maintain that:

Er [K ′
v] = KEr [v]. (A.10)

To show the above relation, assume that r is the number
of outcomes earned after making one response. Since
according to the definition of random-ratio and variable-
ratio schedules, out of N responses on average N/k will be
rewarded, we have Er [r] = 1/k and the expected rate of
outcome earning will be:

Er [v] = Er

[ r

τ

]
= 1

kτ
. (A.11)

Furthermore, according to Eq. A.4 the cost of one response
is a/τ + b, and therefore, the cost per unit of time will be:

K ′
v = a/τ + b

τ
. (A.12)

Therefore:

Er [K ′
v] = a/τ + b

τ
= Er [v]k(akEr [v] + b) (using Eq. A.11)

= KEr [v] (using Eq. A.6),

which proves Eq. A.10. Substituting Eqs. A.10, A.9 in
Eq. A.2 yields Eq. A.5, which proves the theorem.

We now turn to the case of multi-dimensional outcome
spaces. The aim is to show Eq. A.2 is equivalent to Eq. A.3.
To show this, we first maintain that:

E[v.Ax,t ] = E[v].Ax,t , (A.13)

which holds sinceAx,t can be assumed to be constant during
dt time step. Next, we show that:

E[K ′
v] = KE[v], (A.14)

which states that E[K ′
v] can be represented as a function of

E[v]. To show this, assume ri is the number of outcomes
earned after making one response for outcome i, and τi is
the delay between responses for outcome i. We have:

E[vi] = E

[
ri

τi

]
= E[ri]

τi

, (A.15)

and therefore τi can be expressed as a function of E[vi].
Next, assume that [Cτ ]i is the cost of making one response
for outcome i with delay τi between the responses, and τ

is a vector containing the delay between responses for each
outcome (τ = [τ1 . . . τn]). In dt time step, dt/τi responses
for outcome i are made, and therefore the total cost in dt

time period will be [Cτ ]idt/τi , which implies that the cost
for outcome i per unit of time is [Cτ ]i/τi . Given this, the
total cost paid for all the outcomes per unit of time will be:

E[K ′
v] =

∑
i

[Cτ ]i
τi

=
∑

i

[Cτ ]i E[vi]
E[ri] (using Eq. A.15)

= KE[v],

where we used the fact that τ in Cτ can be expressed
using E[v] (using Eq. A.15), and therefore E[K ′

v] can be
expressed as a function of E[v], which is denoted by KE[v]
(as noted in Eq. A.14). Substituting Eqs. A.14, A.13 in
Eq. A.2 yields Eq. A.3.

Appendix B: Optimal actions
in one-dimensional outcome space

The aim is to derive optimal actions when the outcome space
has one dimension. Given the reward field Ax,t , the reward
of gaining dx units of outcome will be Ax,tdx, and since
dx = vdt , the reward earned in each time step is vAx,t .
Given that Kv is the cost function (the cost paid in each time
step), the net reward in each time step can be written as:

Lx,v,t = vAx,t − Kv, (B.1)
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and based on this, the value, which is the sum of net rewards
in each time step, will be:

S0,T =
∫ T

0
Lx,v,t dt . (B.2)

The optimal rates that maximize S0,T can be found
using different variational calculus methods such as the
Euler–Lagrange equation, or the Hamilton–Jacobi–Bellman
equation (Liberzon, 2011). Here we use the Euler–Lagrange
form, which sets a necessary condition for δS = 0:

d

dt

∂L

∂v
= ∂L

∂x
. (B.3)

Furthermore, since the end-point of the trajectory is free
(the amount of outcomes that can be gained during a session
is not limited, but the duration of the session is limited to
T ), the optimal trajectory will also satisfy the transversality
conditions:

∂L

∂v

∣∣∣∣
t=T

= 0, (B.4)

which implies:

∂Kv

∂v

∣∣∣∣
t=T

= Ax,t |t=T , (B.5)

where as mentioned T is the total session duration.
By substituting Eq. B.1 in Eq. B.3 we will have:

d

dt

(
−∂Kv

∂v
+ Ax,t

)
= v

dAx,t

dx
. (B.6)

The term dAx,t /dt has two components: the first compo-
nent is the change in Ax,t due to the change in x and the
second component is due to the time-dependent changes in
Ax,t :

dAx,t

dt
= dx

dt

∂Ax,t

∂x
+ ∂Ax,t

∂t

= v
∂Ax,t

∂x
+ ∂Ax,t

∂t
. (B.7)

Furthermore we have:

d

dt

(
∂Kv

∂v

)
= dv

dt

∂2Kv

∂v2
. (B.8)

Substituting Eqs. B.7, B.8 in Eq. B.6 yields:

dv

dt

(
∂2Kv

∂v2

)
= ∂Ax,t

∂t
. (B.9)

In the condition that the rate of outcome earning is constant
(dv/dt = 0), we have xT = vT , which by substituting in
Eq. B.5 yields:

∂Kv∗

∂v∗ = AT v∗,T . (B.10)

The above equation will be used in order to calculate the
optimal rate of outcome earning.

Appendix C: Theorem 1: Proof

The cost function Kv defined in Eq. 3 satisfies the following
relation:

∂2Kv

∂v2
> 0, (C.1)

which holds as long as at least one response is required to
earn an outcome (k > 0), and the cost of earning outcomes
is non-zero (a > 0).

Assuming that ∂Ax,t /∂t = 0, and given Eq. C.1, the only
admissible solution to Eq. B.9 is:

dv

dt
= 0. (C.2)

Furthermore, assuming ∂Ax,t /∂t > 0, and given Eq. C.1,
the only admissible solution to Eq. B.9 is:

dv

dt
> 0, (C.3)

which proves Theorem 1.

C.1 Simulation details of Fig. 1

For the illustration depicted in Fig. 1, following parameters
were used: a = 0.32, b = 0, k = 4, A = H = 5. The cost
and the reward were calculated at each time-step using the
response rates shown in the figure. The cost were calculated
using Eq. 3 and the reward field was assumed to be constant
throughout the session.

Appendix D: Theorem 2: Proof
and simulation details

D.1 Proof of Theorem 2

In order to prove the theorem, we first provide a lemma.
Assuming that the total session duration (T ) has the
probability density function f (T ) and that f (T ) > 0, here
we show that the expectation of the total session duration
never decreases as time passes throughout the session.

Lemma 1 Let’s denote the expectation of the session
duration at time t ′ with T ′

T ′ = E[T |T > t ′], (D.1)

and assume T has the following probability density
function:

T ∼ f (T ), f (T ) > 0. (D.2)

Then:

∂T ′

∂t ′
> 0. (D.3)
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Proof We have:

∂T ′

∂t ′
= ∂E[T |T > t ′]

∂t ′

= ∂

∂t ′

[∫ ∞

t ′
Tf (T )

1 − F(t ′)
dT

]

= ∂

∂t ′

[
1

1 − F(t ′)

∫ ∞

t ′
Tf (T )dT

]

= f (t ′)
[1 − F(t ′)]2

∫ ∞

t ′
Tf (T )dT − t ′f (t ′)

1 − F(t ′)

= f (t ′)
1 − F(t ′)

∫ ∞

t ′
Tf (T )

1 − F(t ′)
dT

︸ ︷︷ ︸
E[T |T >t ′]

− t ′f (t ′)
1 − F(t ′)

= f (t ′)
1 − F(t ′)

(
E[T |T > t ′] − t ′

)
> 0, (D.4)

where F(T ) is the cumulative distribution function of T .
Based on the above lemma, we show that the optimal

response rate is a decreasing function of t ′. Since in
Theorem 2 the value is calculated under the assumption that
the section length is T ′, and based on Eq. B.5, the optimal
response rate satisfies the following equation:

∂Kv

∂v

∣∣∣∣
t=T ′

= Ax,t |t=T ′ . (D.5)

Taking the derivative w.r.t to the current time in the session,
i.e., t ′ we get:

dv

dt ′

(
∂2Kv

∂v2

)
= ∂T ′

∂t ′

(
v
∂Ax,t

∂x
+ ∂Ax,t

∂T ′

)
. (D.6)

Theorem 2 assumes that ∂Ax,t /∂x < 0 and ∂Ax,t /∂T ′ = 0,
which given Eqs. D.3, C.1, and that v > 0 yields:

dv∗

dt ′
< 0, (D.7)

which implies that the rate of earning outcomes decreases as
time passes within a session. The second part of Theorem 2
assumes that ∂Ax,t /∂x = 0 and ∂Ax,t /∂T ′ = 0, which
given Eq. D.6 implies dv/dt ′ = 0, and therefore the optimal
rate of outcome earning is not changing by the current time
in the session, i.e., it is constant.

D.2 Simulation details

The simulation of the model depicted in Fig. 2: right panel
requires defining (i) the reward field, (ii) the cost function,
and (iii) a probability distribution over the session duration.
As for the probability distribution of the session duration,
following McGuire and Kable (2013), we assumed that T

follows a Generalized Pareto distribution:

F(T ) = 1 −
(
1 + kT

σ

)−1/k

, (D.8)

where k is a shape parameter (note that k is not the ratio-
requirement here) and σ is a scale parameter, and the third
parameter (locationμ) was assumed to be zero. Furthermore
we have:

F(T |T > t ′) = 1 −
(
1 + kT

σ + kt ′

)−1/k

, (D.9)

which has the following expected value:

E[T |T > t ′] = σ + kt ′

1 − k
+ t ′, (D.10)

which as we expect is an increasing function of t ′. Note that
at point t ′ the expected remaining time until the end of the
session is σ+kt ′

1−k
.

For the simulation of the model, we assumed that k = 0.7
and σ = 18, which represents that the initial expectation for
the session duration is 60 min.

For the cost function, in all the simulations the cost
defined in Eq. 3 was used, which is equivalent to the cost
function used in the previous works (Niv et al., 2007; Dayan,
2012).

For the definition of the reward field, we used the
framework provided by Keramati and Gutkin (2014), which
provides a computational model for how the values of
outcomes change with the consumptions of the outcomes.
They suggested that the dependency of the reward field
on the amount of outcome earned is indirect and it is
through the motivational drive. They conceptualized the
motivational drive as the deviations of the internal states
of a decision-maker from their homeostatic set-points. For
example, let’s assume that there is only one internal state,
say hunger, where H denotes its homeostatic set-point
(which corresponds to the deprivation level, assuming that
initial value of x is zero), and there is an outcome which
consuming each unit of it satisfies l units of the internal
state. In this condition, the motivational drive at point x,
denoted by Dx , will be:

Dx = 1

2
(H − lx)2. (D.11)

Keramati and Gutkin (2014) showed that such a definition
of the motivational drive has implications that are consistent
with the behavioral evidence. According to the framework,
the reward generated by earning δx units of the outcome is
proportional to the change in the motivational drive, which
can be expressed as:

Ax,t = −∂Dx

∂x
= l(H − lx). (D.12)

As Eq. D.12 suggests, with earning more outcomes
(increase in x) Ax,t decreases. Given the above reward field,
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the optimal response rate of outcome earning, obtained by
Eq. B.10, will be:

v∗ = Hl − bk

T l2 + 2ak2
. (D.13)

Equation D.13 was used in the simulations of the “decreas-
ing reward and unknown session duration” condition in
Fig. 2: right panel. The simulation of this condition was
done using parameters k = 15, l = 1.0, a = 0.05, b = 0.1,
H = 450. As for T , in each time t ′ within the session,
the expected session duration (E[T |T > t ′]) was calculated
using Eq. D.10, and was used as T in Eq. D.13.

For the “known session duration (fixed or decreasing
reward)” condition in Fig. 2: right panel, the same
parameters as the previous condition were used, but the
session duration was fixed to T = 60. For the “fixed
reward (known or unknown session duration)” condition,
we assumed that the reward field is independent of the
amount of reward earned:

Ax,t = lH . (D.14)

Given the above reward field, the optimal rate of outcome
earning is:

v∗ = Hl − bk

2ak2
. (D.15)

The simulation of this condition was done using parameters
k = 15, l = 1.0, a = 0.05, b = 0.1, H = 450/4. Note
that in this condition the response rate was independent of
the session duration. The response rates in all the conditions
were obtained by multiplying the outcome rates by k (since
k responses are required to earn one unit of outcome).

D.3 Simulation details of Figs. 4, 5

The simulation depicted in Figs. 4 and 5 are using Eq. D.13
with the following parameters (note that the optimal
response rates were obtained by multiplying v∗ by k). For
Fig. 4: right panel simulation parameters are T = 50, k = 1,
l = 1, a = 1, H = 8. Parameter b is varied between 3 to 7
in order to generate the plot.

In Fig. 5: left panel simulation parameters are T = 50,
l = 1, a = 0.3, b = 0.05, H = 100. Parameter k was varied
between 1 to 100 in order to generate the plot.

In Fig. 5: middle panel simulation parameters are T =
50, k = 1, l = 1, a = 0.3, b = 0.05. Parameter H was
varied between 10 to 100 in order to generate the plot.

In Fig. 5: right panel simulation parameters are T = 50,
k = 1, a = 0.1, b = 0.1, H = 100. Parameter l was varied
between 0 to 1 in order to generate the plot.

Appendix E: Optimal actions
in multi-dimensional outcome space

The aim of this section is to derive the optimal actions in
the condition that the outcome space is multi-dimensional.
Optimal trajectory will satisfy the Euler–Lagrange equation
along each outcome dimension:

d

dt

∂L

∂v
= ∂L

∂x
, (E.1)

where:

Lx,v,t = Ax,t .v − Kv. (E.2)

Furthermore since the end point of the trajectory is free (the
total amount of outcomes is not fixed) we have:

∂L

∂v

∣∣∣∣
t=T

= 0. (E.3)

Using Eqs. E.1, E.2 we have:

d

dt

(
d

dv
(−Kv + v.Ax,t )

)
= d(v.Ax,t )

dx
. (E.4)

For the right-hand side of the above equation we have:

d(v.Ax,t )

dx
= vᵀ

∂Ax,t

∂x
. (E.5)

We also have:

dAx,t

dt
= ∂Ax,t

∂t
+ ∂Ax,t

∂x
v, (E.6)

which by substitution into Eq. E.4 yields:

d

dt

∂Kv

∂v
= ∂Ax,t

∂t
+

(
∂Ax,t

∂x
− ∂A

ᵀ
x,t

∂x

)
v. (E.7)

We now provide two lemmas, which will be used in the
proof of the following theorems.

Lemma 2 Assume that H is the Hessian matrix of Kv, i.e.,

[H]i,j = K2
v

∂vi∂vj

, (E.8)

and furthermore assume that the cost of earning outcomes
along each dimension is independent of the outcome rate on
the other dimensions, i.e.,

Hi,j = 0, i �= j . (E.9)

Then:

d

dt

∂Kv

∂v
= dv

dt



(
∂2Kv

∂v2

)
, (E.10)

where ∂2Kv/∂v2 represents the diagonal terms ofH, and 

is entrywise Hadamard product.
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Proof Using Eq. E.9 we have:

d

dt

∂Kv

∂v
= dv

dt
H

= dv
dt



(

∂2Kv

∂v2

)
, (E.11)

where the last equation comes from the fact that H is a
diagonal matrix.

Lemma 3 Assuming that the reward field is conservative,
i.e.,

Ax,t = −∂Dx

∂x
, (E.12)

then:

M = ∂Ax,t

∂x
− ∂A

ᵀ
x,t

∂x
= 0. (E.13)

Proof Using Eq. E.12 we get:

[M]i,j = ∂[Ax,t ]i
∂xj

− ∂[Ax,t ]j
∂xi

= − ∂2Dx

∂xj ∂xi

+ ∂2Dx

∂xi∂xj

= − ∂2Dx

∂xi∂xj

+ ∂2Dx

∂xi∂xj

(using Schwarz’s theorem)

= 0.

Note that the use of Schwarz’s theorem is based on the
assumption that Dx is twice differentiable, which holds in
the circumstances that we consider here.

Appendix F: Theorem 3: proof
and simulation details

F.1 Proof of Theorem 3

Theorem 3 assumes that (i) the costs of earning outcomes
are independent (E.9), (ii) the reward field is conservative
(E.12), and (iii) the reward field is independent of time
(∂Ax,t /∂t = 0). Based on Lemmas 2, 3 and Eq. E.7 we
have:

dv
dt



(

∂2Kv

∂v2

)
= 0. (F.1)

Given that Eq. C.1 holds along each outcome dimension
(∂2Kv/∂v2 � 0), the only admissible solution to Eq. F.1 is
dv/dt = 0, which shows that the optimal rate of earning
outcomes is constant. Since the optimal rate is constant,
we have xT = T v∗, which by substituting in boundary
conditions implied by Eq. E.3 yields Eq. 9:

∂Kv∗

∂v∗ = AT v∗,T , (F.2)

which completes the proof the theorem.

F.2 Simulation details

For the simulation of the model in Fig. 6: left panel
“independent cost” condition, it is assumed that the two
outcomes have the same reward effect, but earning the
second outcome requires l times more responses. Following
Keramati and Gutkin (2014), since the two outcomes have
the same reward properties we defined the motivational
drive as follows:

Dx = 1

2
(H − x1 − x2)

2, (F.3)

where as mentioned Dx is the motivational drive and it
represents the deviations of the internal state of the decision-
maker from its homeostatic set-point (H ). x1 is the amount
of O1 earned and x2 is the amount of O2 earned, and the
current motivational drive for earning outcomes depends on
the difference between the total amount of earned outcomes
(x1 + x2) and the homeostatic set-point (H ).

Given the motivational drive, the amount of reward
generated by consuming each outcome will be equal to
the amount of change in the motivational drive due to the
consumption of the outcomes (12), and therefore, we have:

Ax,t = −∂Dx

∂x
= [H − x1 − x2, H − x1 − x2]. (F.4)

The above equation was used as the reward field in the
simulations. As for the cost function, earning one unit ofO1

requires k responses on the left hand, and earning one unit
of O2 requires lk responses on the right hand. Based on this
and using Eq. 3, the cost function will be:

Kv = v1[ak2v1 + kb] + v2[ak2l2v2 + klb], (F.5)

where v1 is the rate of earning O1 and v2 is the rate of
earning O2.

Using Theorem 3, the optimal response rate will be
(assuming b = 0):

response rate=

⎡
⎢⎢⎢⎣

for left hand︷ ︸︸ ︷
kl2H

T l2 + 2ak2l2+T
,

for right hand︷ ︸︸ ︷
klH

T l2+2ak2l2 + T

⎤
⎥⎥⎥⎦ ,

(F.6)

where as mentioned in the main text “left hand” is the
response that should be taken for earning O1, and “right
hand” is the response that should be taken for earning O2.
Parameters used for simulations are k = 1, l = 2, a = 1,
b = 0, H = 100, and T = 20. Note that for obtaining the
response rates, the outcome rate forO1 was multiplied by k,
and the outcome rate for O2 was multiplied by kl.
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Appendix G: Theorem A2: definition, proof
and simulation details

G.1 Proof of Theorem A2

The aim of this section is to derive optimal actions in
the conditions that the costs of earning outcomes are
dependent on each other. In this condition, one can assume
what determines the cost is the delay between subsequent
responses, either for the same or for a different outcome,
i.e., the cost is proportional to the rate of earning all of
the outcomes. In particular, if for earning O1, k responses
are required and for earning O2, lk responses are required
(l �= 1), then the delay between subsequent responses (τ )
will be 1/(kv1 + lkv2). Given Eq. 2, the cost of earning
one unit of O1 will be k[a(kv1 + lkv2) + b], and the cost
of earning one unit of O2 will be kl[a(kv1 + lkv2) + b].
Such a cost function can be achieved by defining the cost as
follows:

Kv = v1[ak(kv1 + lkv2)+kb]+v2[akl(kv1 + lkv2)+klb].
(G.1)

In the following theorem, we maintain that given the above
cost function, the optimal actions are to make no response
for O2, and to make responses for O1 at a constant rate.

Theorem A2 Given the cost function defined in Eq. G.1
and assuming that the two outcomes have the same reward
properties, i.e.,:

[Ax,t ]1 = [Ax,t ]2. (G.2)

Then the optimal actions satisfy the following equations:

dv1

dt
= 0,

v2 = 0. (G.3)

Proof By substituting Eq. G.1 in Eq. E.2 we have:

L = −v1 [ak(kv1+lkv2)+kb)]−v2 [akl(kv1+lkv2)+klb]

+ v1[Ax,t ]1 + v2[Ax,t ]2. (G.4)

Using the boundary condition mentioned in Eq. E.3 we
have:

[AxT ,T ]1 − 2ak2lv2 − 2ak2v1 − bk = 0,

[AxT ,T ]2 − 2ak2l2v2 − 2ak2lv1 − bkl = 0. (G.5)

Using Eq. G.2 we get:

v1 = −lv2 − b

2ak
, (G.6)

which is not admissible given constraints v1 ≥ 0 and
v2 ≥ 0, and therefore we assume either v1 or v2 will be
equal to zero. The trajectory will have a higher value by

setting v2 to zero since O2 has a higher cost, and therefore
the optimal solution will be v2 = 0. Since v2 = 0
the problem degenerates to a one-dimensional problem, in
which according to Theorem 1 the optimal response rate is
constant, and therefore the rate of responding forO1 will be
constant, which proves the theorem.

G.2 Simulation details

For the simulation of the model in Fig. 6: left panel
“dependent cost” condition, it is assumed that k responses
on the left lever are required to earn O1 and lk response
are required on the right lever to earn O2. Similar to the
“independent cost” condition mentioned in the previous
section, the reward field was assumed as follows:

Ax,t = −∂Dx

∂x
= [H − x1 − x2, (H − x1 − x2)] . (G.7)

Since the response rate for one of the outcomes will be
zero (according to Theorem A2), the problem degenerates
to an environment with one action and one outcome. Using
Theorem 1, and Eq. B.10 the optimal response rate will be:

response rate =

⎡
⎢⎢⎣k

H − bk

T + 2ak2︸ ︷︷ ︸
for left lever

, 0︸︷︷︸
for right lever

⎤
⎥⎥⎦ . (G.8)

Parameters used for simulations are k = 1, a = 1, b = 0,
H = 100, and T = 20.

Appendix H: Theorem A3: definition, proof
and simulation details

H.1 Proof of Theorem A3

The aim of Theorem A3 is to derive optimal actions when
the reward field is non-conservative and the costs of actions
are independent. An example of a non-conservative reward
field is when the amount of reward that consuming an
outcome produces is greater or smaller than the change
in the motivational drive. For example, assume that there
are two outcomes available, and the consumption of both
outcomes has a similar effect on the motivational drive:

Dx = 1

2
(H − x1 − x2)

2, (H.1)

but the reward that the second outcome generates is l times
larger (l �= 1) than the change it creates in the motivational
drive:

Ax,t =
[
−l

∂Dx

∂x1
, −∂Dx

∂x2

]
= [l(H − x1− x2), H − x1−x2].

(H.2)
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In this condition, ∂[Ax,t ]1/∂x2 = −l and ∂[Ax,t ]2/∂x1 =
−1, and therefore the reward of the second outcome due
to the consumption of the first outcome decreases more
sharply than the reward of the first outcome would, due to
the consumption of the second outcome. We have:

M = ∂Ax,t

∂x
− ∂A

ᵀ
x,t

∂x
=

[
0 1 − l

l − 1 0

]
, (H.3)

and as long as l �= 1 then M �= 0, and therefore the reward
field is non-conservative, because if it was conservative then
according to Lemma 3 we should haveM = 0.

If the reward field is non-conservative, i.e., there does not
exist a scalar field Dx such that Ax,t satisfies Eq. 12, then
the optimal response rates are as follows: early in the session
the decision-maker exclusively works for the outcome with
the higher reward value (O1) and, when the time remaining
in the session is less than the threshold (Tc), the decision-
maker then gradually starts working for the outcome with
the lower reward value (O2). More precisely we maintain
the following theorem:

Theorem A3 If the reward field follows Eq. H.2,
∂Ax,t /∂t = 0, and the cost is as follows:

Kv = 1

2
mv21 + 1

2
mv22, (H.4)

then the optimal trajectory in the outcome space will be:

[v1, v2] =
{ [

H(l−1)
T l−Tc

, 0
]
, T − t > Tc

arc of a circle T − t ≤ Tc

, (H.5)

where

Tc = m
arctan(1/l)

l − 1
,

m = 2ak2. (H.6)

Proof We have:

∂Ax,t

∂x
− ∂A

ᵀ
x,t

∂x
=

[
0 1 − l

l − 1 0

]
, (H.7)

and based on Eqs. E.9, H.4, E.7 we get:

dv1

dt
= 1 − l

m
v2,

dv2

dt
= l − 1

m
v1. (H.8)

Defining w = (l − 1)/m, the solution to the above set of
differential equations has the form:

x = [q1 + r/w sin(wt + α), q2 + r/w cos(wt + α)] ,

(H.9)

which is an arc of a circle centered at [q1, q2], and r and
α are free parameters. The parameters can be determined
using the boundary condition imposed by Eq. E.3, and also

assuming that the initial position is x = 0. The boundary
condition in Eq. E.3 implies:

mv = Ax,t |t=T =
[
l
√
2Dx,

√
2Dx

]
, (H.10)

which implies that at the end of the trajectory the rate of
earning the second outcome is l times larger than the first
outcome. Therefore, the general form of the trajectory will
be an arc starting from the origin and ending along the above
direction. Given the constraint that v � 0 only the solutions
in which q2 ≤ 0 are acceptable ones (i.e., the center of the
circle is below the x-axis). Solving Eq. H.9 for q2 ≤ 0 we
get:

T ≤ Tc, (H.11)

where

Tc = m
arctan(1/l)

l − 1
, (H.12)

and therefore Tc is independent of H (the initial motiva-
tional drive). As such if T ≤ Tc (H.11) then the optimal
trajectory will be an arc of a circle starting from the origin.
Otherwise, if T > Tc, the optimal trajectory will be com-
posed of two segments. In the first segment, v2 will take the
boundary condition v2 = 0 and the decision-maker earns
only the first outcome (the outcome with the higher reward
effect). The first segment continues until the remaining time
in the session satisfies Eq. H.11 (the remaining time is less
than Tc), after which the second segment starts, which is
an arc of a circle defined by Eq. H.9. The rate of earning
the first outcome, v1, in the first segment of the trajectory
(when v2 = 0) can be obtained by calculating the rates at
the beginning of the circular segment. The initial rate at the
start of the circular segment is as follows:

r = H(l − 1)

T l − Tc

, (H.13)

which implies that at the first segment of the trajectory we
have:

[v1, v2] =
[
H(l − 1)

T l − Tc

, 0

]
, (H.14)

which completes the proof of Theorem A3.

It is interesting to mention that there is a parallel
between the trajectory that a decision-maker takes in the
outcome space, and the motion of a charged particle in a
magnetic field. In the case that the outcome space is three
dimensional, using Eq. E.7 the optimal path in the outcome
space satisfies the following properties:

m
dv
dt

=
(

∂Ax,t

∂x
− ∂A

ᵀ
x,t

∂x

)
v

= −v × B, (H.15)
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where × is the cross product, B is the curl of the reward
field (B = curlAx,t ), and m = 2ak2. The Eq. H.15 in fact
lays out the motion of a unit charged particle (negatively
charged) with mass m in a magnetic field with magnitude B.

H.2 Simulation details

Simulations shown in Fig. 6: right panel are based on
Theorem A3, and the parameters used are k = 1, l = 1.1,
a = 1, b = 0, H = 100, m = 2ak2.
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