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Brain and Mind Research Institute, University of Sydney, 100 Mallett St., Camperdown,
New South Wales 2050, Australia

Goal-directed action involves making high-level choices that are implemented

using previously acquired action sequences to attain desired goals. Such a hier-

archical schema is necessary for goal-directed actions to be scalable to real-life

situations, but results in decision-making that is less flexible than when action

sequences are unfolded and the decision-maker deliberates step-by-step over

the outcome of each individual action. In particular, from this perspective,

the offline revaluation of any outcomes that fall within action sequence bound-

aries will be invisible to the high-level planner resulting in decisions that are

insensitive to such changes. Here, within the context of a two-stage decision-

making task, we demonstrate that this property can explain the emergence

of habits. Next, we show how this hierarchical account explains the insensitiv-

ity of over-trained actions to changes in outcome value. Finally, we provide

new data that show that, under extended extinction conditions, habitual be-

haviour can revert to goal-directed control, presumably as a consequence of

decomposing action sequences into single actions. This hierarchical view

suggests that the development of action sequences and the insensitivity of

actions to changes in outcome value are essentially two sides of the same

coin, explaining why these two aspects of automatic behaviour involve a

shared neural structure.
1. Introduction
Goal-directed action is a form of decision-making guided by encoding the

relationship between actions and their consequences, and the value of those con-

sequences [1–5]. Outcome devaluation studies provide direct evidence that both

humans and other animals engage in this form of action control. For example, in a

typical experiment, an agent is first trained to perform two different actions that

earn different food outcomes. After this training, an outcome devaluation treat-

ment is conducted off baseline or ‘offline’; that is, in a situation where the

outcome is presented without the action being performed, a treatment that gener-

ally involves sating the animals on one of the two outcomes to decrease its value.

Subsequently, back ‘online’, a test is conducted in which choice between the two

actions is assessed in the absence of the outcome. Typically, when given this

choice, humans and other animals decrease their performance of the action

that previously delivered the now devalued outcome, demonstrating that such

actions reflect both the relationship to their consequences and the value of

those consequences [6].

Extended training makes goal-directed actions habitual or automatic. This

automaticity has two manifestations: (i) inflexibility of actions to the offline

changes in the value of their outcomes [2,7] and (ii) the concatenation of actions

executed together to form action sequences that are then treated as a single

response unit [8,9]. These two aspects of automaticity share a similar neural struc-

ture (e.g. [10]), however, computationally, they have been attributed to two

different models: insensitivity to changes in outcome value has often been inter-

preted as evidence for a model-free reinforcement learning (RL) account of

instrumental conditioning [11,12], whereas the development of action sequences
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has been linked to hierarchical RL [13]. Here, building on pre-

vious work [13–15], we demonstrate that the insensitivity of

specific actions to changes in outcome value can be a conse-

quence of developing action sequences and, therefore, that

both types of automaticity can be reconciled within hierarchi-

cal model-based RL. This account proposes that, early in

training, decision-making involves a goal-directed controller

that deliberates over the consequences of individual actions

in a step-by-step manner. After sufficient training, however,

action sequences form and goal-directed actions become hier-

archically organized. After this stage, offline changes in the

value of outcomes that fall within the boundaries of an

action sequence will be invisible to the high level controller

and, as such, decisions will appear insensitive to such changes.

Here, we elaborate this account of habits within the context of

two decision-making tasks in humans and rodents. First, how-

ever, we briefly introduce hierarchical decision-making and

its properties.
 9:20130482
2. Hierarchical decision-making
In many situations, choices are not followed immediately by an

outcome and require a number of subsequent choices prior

to outcome delivery. In order to make goal-directed deci-

sions, the available options and their consequences need to

be considered in addition to the immediate, one-step-ahead

consequence of each action. However, this process is computa-

tionally effortful as the number of factors involved in the

learning and decision-making process grows exponentially

with each additional step required to reach the goal. This

makes simple goal-directed decision-making unscalable to

complex environments [16].

An alternative view of goal-directed action that we have

recently developed [14,15] uses hierarchical decision-making
[13], proposing that, rather than deliberating step-by-step, indi-

vidual actions are concatenated to form an action sequence or

action chunk [8,9,17–21]. Action sequences are typically studied

in motor-skill learning (referred to as motors skills), although

they are also observed in other domains [22,23]. Utilization of

action sequences improves learning, planning and perform-

ance of actions. Learning is enhanced because outcomes are

learned for the whole sequence rather than for each of the indi-

vidual actions. Subsequently, planning becomes faster: instead

of deliberating over each individual action at the choice point,

the decision-maker needs only look at the final outcome of each

action sequence. Thus, the scalability problem is overcome by

assuming that actions are structured in the form of action

sequences, and the decision-maker has only to choose among

those action sequences. As a result, performance of actions

will also improve, as actions within the sequence will run off

automatically without planning, enabling fast and precise per-

formance of actions. When the execution of an action sequence

finishes, the decision-maker makes another choice and this pro-

cess continues (see also William James notion of habits for a

similar conception ([24] ch. IV on habits)).

An alternative approach to the limitations of simple

goal-directed decision-making is to use model-free RL. This

approach proposes that, whenever simple goal-directed

decision-making is either not reliable [11,25] or not required

[12], actions that have previously procured the most valuable

rewards will automatically be selected for execution without

consideration of their outcomes. Within this model, habitual
actions operate outside the scope of goal-directed decision-

making and, therefore, their computational role is not related

to making goal-directed decision-making scalable, which is

in contrast to the role of habits in hierarchical decision-

making. Along the same lines, the algorithmic representation

of automatic actions in the model-free RL account involves

processing the current situation at each step followed by

selecting an action and then updating the value of the

selected action. This contrasts with hierarchical decision-

making in which learning and action selection do not occur

during the performance of habitual actions.
3. Planning mistakes and slips of action in
hierarchical decision-making

The efficiency gained using hierarchical decision-making

comes at the cost of certain types of error that can be divided

into two broad categories: errors in action planning, known

as ‘planning mistakes’, and errors in action execution, known

as ‘slips of action’ [26,27].

(a) Planning mistakes
Although mistakes can take various forms (see for example [28]

for different types of optimality in hierarchical RL), an impor-

tant type of planning mistake relates to the inflexibility of

decisions after offline changes in outcome value. One effect

of chunking actions together and turning them into a single

response unit is that the representation of the action sequence

is independent of its embedded individual actions and their

outcomes. Although this higher level representation of actions

makes decision-making easier and faster, it also renders the

evaluation of action sequences insensitive both to offline

changes in individual action–outcome contingencies and to

changes in the value of any outcomes delivered within the

sequence boundaries [15]. After such changes, the planner

might, therefore, continue to choose an action sequence even

though it is less likely to result in a valued outcome than pre-

viously and another action now has a higher value under the

new conditions.

(b) Slips of action
Errors associated with slips of action are not an inherent part of

hierarchical decision-making but occur because of the way

the execution of action sequences is realized at a mechanistic

level. Slips of action also take various forms but are generally

related to the ‘open-loop’ or ‘feed-forward’ performance of

action sequences [8,18,29]; that is, once an action sequence is

launched, the actions in the sequence will be executed auto-

matically up to the end of the sequence. As a consequence,

the feedback received from the environment after the execution

of an action (i.e. the outcome of an action) will not affect which

action is taken next because this is determined by the order of

actions in the action sequence. This open-loop property is con-

trasted with ‘closed-loop’ control that is engaged after the

execution of each individual action, meaning the planner

selects actions according to the outcome of previous actions.

This open-loop property can, however, cause slips of action

because the next action in the sequence will be executed auto-

matically even if the outcome indicates another action should

have been taken. For example, a monkey trained to press a

sequence of buttons to earn a reward will continue to execute

http://rstb.royalsocietypublishing.org/
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the sequence up to the end even if the reward is delivered

within the sequence, and the performance of the rest of the

sequence is not required [30] (see also [31] for a similar

phenomenon in maze navigation). It is worth mentioning

that, although action selection is divorced from environmental

feedback under these conditions, this does not imply that

the execution of actions is feedback-free; action execution can

operate in a closed-loop manner by relying on sensory feed-

back and environmental stimuli. Another slip of action,

known as a ‘capture error’ or ‘strong habit intrusion’ [26,27],

describes a situation in which the decision-maker produces

an action that is a part of a well-practiced action sequence

resulting in the subsequent action sequence unintentionally

running off automatically. The situation ‘I only meant to take

off my shoes, but took off my socks as well’ [26] represents

an example of this kind of error.

The model-free approach to automaticity also entails cer-

tain types of errors with respect to simple goal-directed

decision-making. With respect to the sensitivity of habitual

actions to offline changes in outcome values, whereas the hier-

archical account predicts that automatic actions will be

performed only when the outcome falls within the action

sequences (due to a mistake in planning), the model-free

account predicts that automatic actions will be executed irre-

spective of the position of the devalued outcome within or

outside a sequence of actions. Furthermore, slips of action are

not anticipated by the model-free account of automatic actions.
4. Testing predictions of the hierarchical account:
planning mistakes and insensitivity to
changes in outcome value

Having introduced the hierarchical account, in this section

we describe two experiments testing predictions derived

from this account. Evidence from humans and other animals

suggests that over-training causes actions to become insensi-

tive to changes in the value of their consequences or outcome.

From the perspective of hierarchical decision-making, this

insensitivity to outcome revaluation/devaluation is linked

to the planning mistakes described above [15]. This con-

nection is more readily visible in the performance of a

two-stage task that we recently developed [14] based on

that of Daw et al. [32]. In this section, we first describe an

experimental test of this connection by developing this task

within the context of the outcome revaluation/devaluation

paradigm (see [14] for detailed methods). We then explore

the issue of how the hierarchical account explains variations

in the sensitivity of actions to outcome devaluation in instru-

mental conditioning (see [15] for simulations) and describe a

second experiment in which we assess a prediction regarding

the effect of extinction on the performance of habit sequences.

(a) Experiment 1: outcome devaluation/revaluation in a
two-stage task

(i) Method
In this version of the two-stage task (cf. [14] for details),

15 human subjects were instructed to make a binary choice

at stage 1 (i.e. A1 or A2), the outcome of which was either

O1 or O2 (which are two distinct two-armed slot machines).

Subjects could then make another binary choice in stage 2,
choosing one or other arm (i.e. R1 or R2), which had either a

rewarding or a neutral result (e.g. $ versus X; figure 1a). At

the first stage, A1 typically led to O1 and A2 to O2 (common

trials; figure 1b). However, on a minority of trials, A1 led to

O2, and A2 to O1 (rare trials; figure 1b). Depending on the out-

come in stage 1 (O1 or O2), the choices in stage 2 could have a

rewarding or neutral result. The role of stage 2 choices was,

therefore, to manipulate the value of O1 and O2 (figure 1b).

In order to change the value of these outcomes during the ses-

sion, the probability of a reward for each stage 2 choice

increased or decreased randomly on each trial (e.g. an R1

choice in O1 that was leading to money, might now lead to

an X), which will cause frequent devaluation/revaluation of

the O1 and O2 outcomes during the task (cf. [14] for details).

Each participant completed 270 trials.

Changes in outcome value are usually accomplished in

revaluation/devaluation studies by offline treatments such as

specific satiety and taste aversion learning [3,33]. In this task

to test whether stage 1 actions were guided by the value of

their outcomes, a small number of rare trials were inserted

among common trials such that a stage 1 choice occasionally

led to the outcome of the other choice (e.g. A2 will lead to O1

which is usually the outcome of A1). These rare trials allowed

the offline manipulation of outcome values; that is, they

allow the value of O1 to be manipulated (devalued/revalued)

without A1 being chosen at stage 1 (figure 1c,d).
(ii) Results
Using this design, we found that stage 1 choices were

sensitive to the offline revaluation/devaluation of their

outcomes confirming that these actions were goal-directed

(figure 1e). As two steps are required to reach a reward, how-

ever, goal-directed action selection can be extended to engage

hierarchical decision-making. From this perspective, subjects

can combine stage 1 and stage 2 actions and build action

sequences A1R1, A1R2, A2R1, A2R2, such that, at stage 1, the

choice will be between all actions including both the single

actions (A1, A2, etc.) and action sequences (A1R1, A1R2,

etc.), based on their contingency to reward (figure 2a). If sub-

jects are using action sequences then we should expect to

observe the open-loop execution of actions. In general, the

best action in O1 is independent from that in O2, and, there-

fore, the choice of stage 2 action (R1 versus R2) should be

based on the outcome of the stage 1 action. We found, how-

ever, that when the previous trial was rewarded, and subjects

repeated the same stage 1 action (A1 or A2), they also tended

to repeat the same stage 2 action (R1 or R2), irrespective

of the outcome of the stage 1 action (figure 2b). In these

cases, the stage 2 action was determined at stage 1 when the

sequence was launched, which is one marker for the develop-

ment of such sequences (figure 2c; see [14] for a similar pattern

in reaction times). This observed open-loop execution of

actions is not related to the generalization of action values

across O1 and O2 (e.g. a high value of R1 in O1 entails a high

value for R1 in O2), as subjects repeat the same stage 2 action

only if they have executed the same action at stage 1 (figure

2c), whereas in the case of generalization of values, we expect

subjects to repeat the same stage 2 action even if the same

stage 1 action was not chosen. It is also possible that subjects

formed longer action sequences (A1R1, A1R2, . . .); however,

within the current task, the existence of such action sequences

cannot be detected either using reaction times, because of the

http://rstb.royalsocietypublishing.org/
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Figure 1. The two-stage task. (a) At stage 1, subjects choose between A1 and A2, and the outcome can be O1 or O2. They then make another choice (R1 versus R2),
which can have a rewarding or neutral result ($ versus X). (b) The outcomes of A1 and A2 are commonly O1 and O2, respectively. On approximately 30% of trials,
however, these relationships switch and A1 leads to O2, and A2 leads to O1 (dashed arrows). The values of O1 and O2 depend on the probability of earning a reward
after the stage 2 actions, R1 or R2. In the current illustration, actions in O1 are not rewarded and so O1 has a low value, whereas O2 has a high value because an
action in O2 is rewarded. Each stage 2 action will result in a reward with either a high (0.7) or a low probability (0.2) independent of the other actions. In each trial,
there is a small chance (1 : 7) that these reward probabilities reset to high or low randomly, which causes frequent devaluation/revaluation of outcomes (O1 and O2)
across the session. (c) Both choices at O2 have a low value (left), and in the next trial, the reward probability of one of the actions becomes high (right). In a rare
trial, the subject executes A1 and receives O2 instead of O1, and then the action in O2 becomes rewarded (blue arrows indicate executed actions), which causes offline
revaluation of O2. Thus A2 should be taken in the subsequent trials to reach O2. (d ) O2 has a high value (left), and on the next trial, the action that was rewarded
previously in O2 is not rewarded (right). In a rare trial, the subject chooses A1 and receives O2 instead of O1, after which the action in O2 is not rewarded. This causes
the offline devaluation of O2 and, in subsequent trials, A1 should be chosen so as to avoid O2. (e) The probability of selecting the same stage 1 action on the next
trial as a function of whether the previous trial was rewarded, and whether it was a common or rare trial (mixed-effect logistic regression analysis with all coeffi-
cients treated as random effects across subjects; ‘reward’ � ‘transition type’ interaction: coefficient estimate ¼ 0.41; s.e. ¼ 0.11; p , 5 � 1024). Based on (c,d ),
when rewarded after a rare trial, a different stage 1 action should be taken, whereas when unrewarded after a rare trial, the same stage 1 action should be taken.
This pattern is reversed if the previous trial is common: the same stage 1 action should be taken if the previous trial is rewarded, and a different stage 1 action
should be taken if it is unrewarded. This stay/switch pattern predicts an interaction between reward and transition type if stage 1 actions are guided by their
outcomes values, which is consistent with the behavioural results (see [14]). Error bars, 1 s.e.m.
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inter-trial intervals, or using the open-loop property of

sequences, because the initial state of the task (the black

screen in figure 1a,b) is the same for both actions.

Based on our observation of action sequences, we predic-

ted that we would also observe mistakes in planning. It is

important to note that the outcomes of the stage 1 choices (i.e.

O1 and O2) fall within the boundaries of the action sequences,
implying that these sequences were not revalued by offline

changes in the value of O1 and O2 during rare trials (figure 3).

This failure to adjust the value of these sequences predicts,

given that action sequences enter the action selection process

at stage 1, that subjects will make systematic mistakes in choices

after offline outcome devaluation/re-evaluation. For example,

in a rare trial if the performance of a sequence of actions is

http://rstb.royalsocietypublishing.org/
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In this illustration, A1R1 has a low value because most of the time it is not rewarded (it is occasionally rewarded on rare trials). A1R2 has a high value because it is rewarded
most of the time (it is occasionally not rewarded on rare trials). At stage 1, the subject chooses between all the actions, including action sequences (e.g. A1R2) and single
actions (e.g. A1) based on their contingency to reward. (b) Execution of action sequences is open-loop. For example, the subject chooses the A1R2 sequence for execution
(left) such that, after A1, even if the trial is a rare transition to O2, the subject still executes R2, although clearly R1 should be executed in O2 (right). (c) The probability of
selecting the same stage 2 action when the outcome of the stage 1 action was different from the previous trial. When the previous trial was rewarded, and the subject took
the same first level action (‘same’), they executed the previous action sequence and stayed on the same stage 2 action (mixed-effect logistic regression analysis with all
coefficients treated as random effects across subjects; ‘reward’ � ‘same action in stage 10 interaction: coefficient estimate ¼ 1.02; s.e. ¼ 0.38; p , 0.008). This occurred
even if the outcome was different from the previous trial indicating that another stage 2 action should be taken. The main effect of reward was not significant ( p . 0.05)
implying that, when the subject took a different stage 1 action (‘different’), the previous action sequence was not repeated, and thus the same stage 2 action was not
repeated if the outcome of the stage 1 action was different from the previous trial (see [14]).
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rewarded, subjects tend to repeat the same action sequence in

the next trial (and thus the same stage 1 action), ignoring that

the outcome of the other stage 1 action is revalued. Consistent

with this, we found that being rewarded in the previous trial

increased the likelihood of repeating the same stage 1 action irre-

spective of which outcome and its associated action (A1 or A2)

were revalued/devalued (figure 3b and see [14] for simu-

lations). In addition to this effect, because primitive actions

also enter the action selection process at stage 1 and are sensitive

to outcome devaluation/re-evaluation, the choices also exhib-

ited sensitivity to outcome revaluation leading to a mixture of

actions including those guided by outcome value (when primi-

tive actions are selected; figure 1e), and those that are not (when

action sequences are selected; figure 3).
(iii) Discussion
Within the context of this task we found, as detected via their

open-loop property, that action sequences were performed
and that, as a consequence, decisions were insensitive to a

change in outcome value. These two aspects of performance

are both addressed within a hierarchical account of instru-

mental conditioning, whereas the model-free account of

automaticity only provides an account of the insensitivity of

actions to outcome devaluation and cannot explain the slips

of action at stage 2. In addition to the behavioural analysis

provided here it can be shown, by directly comparing a

family of hierarchical and model-free models on a trial-by-

trial basis, that the hierarchical models provide a better fit

to the subjects’ choices than the model-free account [14].

Over and above these theoretical differences, at the appli-

cation level the hierarchical account provides a basis for

measuring the degree of competition and cooperation between

goal-directed and habitual actions. Previous work (e.g. [11]) has

viewed the interaction between these actions solely in terms

of competition, whereas, in the current framework, the pro-

cesses both cooperate and compete. At the point of initiation

of action sequences, the goal-directed controller launches

http://rstb.royalsocietypublishing.org/
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Figure 3. Insensitivity to outcome devaluation as a consequence of action sequences. (a) After a change in reward probabilities, the value of O2 increases (right). On a rare
trial, the subject is rewarded for taking R1 at O2, and thus O2 revalues offline and on the next trial, according to simple goal-directed behaviour, A2 should be taken.
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the probability that the subject will take the A1R1 action sequence is increased, in contrast to a simple goal-directed choice that indicates A2 should be taken. After
receiving a reward, there is tendency for the subject to take the same stage 1 action if they were rewarded on the previous trial. This is true even if the outcome
of the other action is revalued, which predicts a main effect of reward on the probability of staying on the same stage 1 action, consistent with the behavioural results
(see [14]; refer figure 1e; (analysis similar to figure 1; main effect of reward: coefficient estimate ¼ 0.61; s.e. ¼ 0.09; p , 3 � 10211)).
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habits (cooperation), whereas during the execution of action

sequences, the planner can inhibit an ongoing action sequence

to regain control (competition). This allows for the measurement

of the degree of inhibition, as well as cooperation, between these

two processes. For example, within the context of the two-stage

task, the degree of cooperation between the processes can be

measured by the proportion of times that action sequences are

selected in stage 1 (e.g. using computational modelling), and

the degree of inhibition between the processes can be measured

by looking at the numberof trials in which the subject inhibits an

ongoing action sequence when an irrelevant outcome occurs

at stage 2.

(b) Experiment 2: outcome devaluation and
instrumental extinction

A number of studies in rodents have demonstrated that, under

certain conditions, instrumental actions are divorced from

the value of their consequences. For example, in a typical

outcome devaluation experiment, animals are first trained to

press a lever for a food reward. For some of the rats, the food

is then devalued by pairing its consumption with gastric

malaise, which can be induced by injections of lithium chlor-

ide. This process of outcome devaluation is known as

conditioned taste aversion. Results show that rats receiving

moderate instrumental training (around 250 lever press–

outcome pairings) reduce lever press responding after outcome

devaluation in subsequent extinction tests. However, after

extended training (around 500 lever press–outcome pairings),

lever pressing in rats is impervious to outcome devaluation;

that is, the rats continue to respond on the lever even if the
outcome it previously delivered has subsequently been paired

with illness and the food reward is no longer desirable [2].

Behavioural evidence from motor skill learning exper-

iments suggests that, when a sequence of actions is fixed,

actions concatenate together over the course of training to

form a single response. This is indicated by a reduction in the

reaction times between actions [34,35]. Within this context,

the training phase of a typical rodent instrumental condition-

ing experiment arranges a sequential organization between

lever pressing (LP) and the magazine entry (EM) response

required to reach the outcome, followed by more lever presses

to earn the next outcome (figure 4a). This implies that after

extended training, lever-press and magazine entry respon-

ses could become concatenated to form both LP! EM

and EM! LP action sequences, presumably in a circular

manner (figure 4b). In this situation, the outcome falls within

the EM! LP action sequence, and, as such, this sequence

should be predicted to retain its value despite any offline

outcome devaluation, leading to a mistake in planning [15].

Assuming that, owing to inflexibility in decision-making,

habits impose a cost on the decision-maker (e.g. by inducing

planning mistakes and slips of action), from a normative per-

spective using habits can only be justified when their

benefits, such as faster planning and execution of actions,

exceeds their cost [12,15]. The advantage of being faster is

determined by the value of time, which is usually measured

in terms of the reward rate per unit time [36]. This view pre-

dicts, therefore, that, as the value of time drops, the control

of an action should revert from being habitual to being

goal-directed. In fact, outcome devaluation tests are usually

conducted under extinction conditions in which animals do

http://rstb.royalsocietypublishing.org/
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Figure 4. The sensitivity of actions to outcome devaluation in instrumental conditioning. (a) Animals make an ‘enter the magazine’ (EM) response to consume the
outcome, and then make another lever-press response (LP) to earn the next outcome. (b) By over-training, the EM and LP responses combine to make the action
sequences EM! LP and LP! EM, which presumably can be circular. The outcome falls within the boundaries of the EM! LP action sequence and, as a
consequence, after offline devaluation of outcome, the sequence retains its previous value. Consequently during the test, animals for which the outcome is devalued
press the lever at the same rate as those for which the outcome was not devalued. (c) Number of responses as a percentage of baseline response rates (calculated for
each subject as an average of their four RI60 s sessions) in each minute of the extinction test conducted after conditioned taste aversion. (d ) Number of lever presses
during first 5 min of the extinction test averaged over subjects. (e) Number of lever presses in the last 5 min of the extinction test. Error bars, 1 s.e.m.
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not receive any reward and, therefore, the value of time drops

gradually during the test, predicting that animals should tend

to revert to goal-directed control over time [12,15]. To test this

prediction, we first over-trained animals and then gave them

an extinction test as follows.

(i) Method
We trained 20 male Long-Evans rats to press a lever for

20% sucrose solution on a continuous reinforcement schedule

for 3 days. Subsequently, rats received four sessions of

15 s random interval (RI15 s), followed by four sessions

of random interval 30 s (RI30 s) and four sessions of

random interval 60 s (RI60 s). Rats were given one session

per day, but animals slow to acquire were given remedial

sessions at the end of the day. Sessions terminated when

30 outcomes had been earned, or after 60 min, resulting

in approximately 450 outcome presentations per animal by

the end of training. The day after the last lever-press training

session, the sucrose solution was devalued by conditioned

taste aversion. All rats were given ad libitum access to sucrose

solution for 30 min each day for 3 days. On each day, half of

the animals received an intraperitoneal injection of lithium

chloride (LiCl; 0.15 M; Sigma Aldrich, Castle Hill, New

South Wales, Australia; 20 ml kg21); the other half received

saline injections (20 ml kg21).

On the day following outcome devaluation, rats received

a 10 min extinction test. Rats could respond on the lever,

though no outcomes were delivered. The number of lever

presses and magazine entries were recorded.
(ii) Results
There was a significant group � time (first versus second

half of the test) interaction (repeated measure ANOVA;

F1,18¼ 5.80; p ¼ 0.026), suggesting that outcome devaluation

had a different effect in the first and the second half of

the test. Responding during the first 5 min of extinction phase

does not differ between groups (Welch’s t-test; t15.8 ¼ 0.11,

p ¼ 0.91); both the animals that had the food paired with gas-

tric malaise (devalued) and those that did not receive the

food-illness pairings (non-devalued) responded similarly in

the first 5 min of extinction (figure 4c,d ). However, by the

last 5 min of the test, there was a significant difference in

responding when the devalued and non-devalued groups

were compared (Welch’s t-test; t11.56 ¼ 2.81, p ¼ 0.016),

suggesting that the goal-directed control of actions was

restored in these rats (figure 4c,e). Data from the first half of

the extinction test deviated from normal distribution signifi-

cantly (Shapiro–Wilk normality test; p ¼ 0.008) and thus a

logarithmic transformation was applied to the data.

(iii) Discussion
Consistent with our prior prediction, and presumably as a

result of the breaking down of the EM! LP and LP! EM

action sequences, the rats started to show an increase in sen-

sitivity to outcome devaluation over the course of extinction.

This behavioural observation is consistent with a report

showing that the pattern of neuronal activity, within dorso-

lateral striatum that marks the beginning and end of the

action sequences during training, is diminished when the

http://rstb.royalsocietypublishing.org/
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reward is removed during extinction [37]. It should be

mentioned that this effect of extinction on the recovery of

goal-directed actions can also be attributed to contextual

change, or environmental volatility [38], derived from the

absence of outcomes during the test. In regard to this

factor, further modelling and experimental studies will be

required to decouple the value of time, environmental stat-

istics and context changes on goal-directed actions.

The formation of action sequences requires a set of actions to

be executed in a fixed sequence. When the order of actions

is variable, action sequences do not form [34]. The condi-

tions depicted in figure 4a,b for instrumental conditioning are

examples of fixed sequences of actions; the same lever needs

to be pressed after a magazine entry response to earn the next

outcome [15], allowing for the formation of an EM! LP

action sequence. By contrast, when the action to be executed

after EM is variable, for example, if the animal should some-

times press the left lever and sometimes the right lever to earn

the outcome, then the EM response should not concatenate

with the next action and the outcome will remain outside the

action sequences. This account predicts, therefore, that when

two different levers can be pressed to earn an outcome

(making the response after EM variable), action sequences

will not form and actions will remain sensitive to outcome

devaluation even after extended training. This prediction is

consistent with previous behavioural findings [7,39].

The differential sensitivity of one-lever and two-lever

training to outcome devaluation both can also be addressed

using the model-free account but based on a different logic:

from the model-free perspective, the reason that habits are

insensitive to outcome devaluation is that they are selected

based on their reward history, and this history should not

be altered by an ‘offline’ devaluation/revaluation treatment

[11,12]. To account for why decisions remain goal-directed

when two actions are available, the model-free account pos-

tulates that when an environment is non-stationary, and

thus action values are subject to change, choosing between

two closely valued actions (i.e. two levers in instrumental

conditioning) requires persistent engagement of model-

based processes in order to track which action is better at

each point in time [12]. As a consequence, decisions remain

goal-directed despite over-training. This explanation is

based, therefore, on the assumption that certainty about the

value of actions cannot exceed a certain threshold due to

the environment being non-stationary. This is in contrast to

the hierarchical account according to which the persistent

engagement of goal-directed processes is due to sequence

variability, and the same pattern of behaviour is predicted

whether the environment is assumed to be stationary or not.
5. The neural bases of action sequences
Various models of learning and performance processes that

mediate action sequences have been proposed (see [40,41]

for a review). For example, we have recently advanced a nor-

mative model for learning action sequences [15] based on the

open-loop property of action sequences and that implies,

when two actions concatenate to form an action sequence,

the second action will be executed irrespective of the outcome

of the first. We previously demonstrated that the amount of

reward loss due to this open-loop execution of actions is

equal to the average of the prediction error generated by
the second action [15]. When this reward loss is high, it

implies that the second action should be chosen based on

the specific outcome of the first action, and the actions do

not concatenate. Conversely, a low reward loss implies safe

open-loop execution allowing the action sequence to form.

It has been suggested that reward prediction errors are

coded by midbrain dopamine neurons [42,43], and, as such,

the above framework connects dopamine to action sequence

formation. Consistent with this proposal, evidence suggests

that the administration of a dopamine antagonist disrupts the

chunking of movements into well-integrated sequences in capu-

chin monkeys [44], which can be reversed by co-administration

of a dopamine agonist [45]. In addition, motor chunking

appears not to occur in Parkinsons patients [46] due to a loss

of dopaminergic activity in the sensorimotor putamen, which

can be restored in patients on L-DOPA [47]. Similarly, insensitiv-

ity to outcome devaluation induced by over-training has been

shown to depend on the ascending nigrostriatal dopamine

pathway in rats [48], and the expression of NMDA receptors

on dopamine neurons in mice [49].

Along similar lines, the hypothesis that insensitivity to

devaluation is rooted in the formation of action sequences

is consistent with a body of evidence demonstrating that a

similar neural substrate mediates both habit development,

as measured by outcome devaluation, and action sequence

learning (for a review, see [10,15]). For example, lesion or

inactivation of sensorimotor striatum restores sensitivity to

outcome devaluation in over-trained animals [50,51]. Simi-

larly, inactivation of sensorimotor striatum disrupts the

expression of previously learned motor sequences [52] (but

see [53]), and in humans, the blood-oxygen-level-dependent

activity in sensorimotor putamen is correlated with the con-

catenation of action sequences [54]. Neural firing patterns

recorded in the rat sensorimotor striatum have been reported

to mark the start and end of action sequences in T-maze

navigation [55], and sequences of lever presses [35,56]. Fur-

thermore, it is reported that most of the striatal neurons

that were more active during performance of a learned

action sequence are in sensorimotor striatum, whereas neur-

ons in the associative striatum more strongly responded to

the performance of a new action sequence [57].

In summary, unlike the model-free account of habitual

actions, which is silent with regard to the role of dopamine

and the involvement of the sensorimotor striatum in action

sequence learning, the hierarchical framework proposed

here assigns a computational role to dopamine for learning

action sequences, and is consistent with the shared neural

structure between action sequence learning and insensitivity

to outcome devaluation.
6. Conclusion
We have argued that insensitivity to outcome devaluation, one

marker of habits, can occur as a by-product of hierarchical

decision-making. This hypothetical link between habits and

hierarchical decisions is readily distinguished from previous

computational frameworks that view habits in terms of

model-free decision-making. From the perspective of the cur-

rent approach, however, the model-free account is not

sufficient to explain automatic behaviour because it does not

predict the existence of action sequences, which is inconsistent

with recent data (see [14] for a comparison between these
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accounts). Although it can be extended to accommodate

action sequences, this will render current model-free RL

explanations of outcome devaluation theoretically redun-

dant. This does not imply, however, that model-free RL is

absent in instrumental conditioning, and further experimen-

tal work will be required to study whether a model-free
valuation system coexists within the hierarchical framework

of instrumental conditioning.
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