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Abstract

Neurocognitive decision-making disorders in Iowa Gam-
bling Task (IGT) can be better understood in the light of
computational modeling methods. In this study, we use
Reinforcement Learning (RL) framework to decompose
subjects behavior into its underlying factors. Both healthy
subjects and Substance Dependent Individuals (SDIs) show
poor performance in the task, with significant decline in
SDIs (net score = -2.3) compared with control subjects (net
score = 6.2). Fitting various models of RL family, the results
show that for both groups, frequency-based learning model
coupled with softmax exploration strategy for action selection
is the best descriptor model for choices of subjects in the task
(based on Bayesian Information Criterion). So, being under
the influence of reinforcer frequency instead of its magnitude
is the major factor behind poor performance of subjects. In
addition, sensitivity analysis shows that the performance of the
best fitted model is sensitive to the valence weight parameter
in SDIs. The estimated value of the parameter reveals that
higher deviation of SDIs to harm-avoidance characteristic (in
relation to healthy subjects) causes performance difference
between two groups. Neural and cultural discussions are also
presented to explain the results.

Keywords: Iowa Gambling Task; Reinforcement Learn-
ing Addiction; Decision Making; Computational Modeling.

Intoduction
Addiction is characterized as compulsive drug use, despite
awareness of the deleterious future consequences (Hyman &
Malenka, 2001) The transition from regulated to compulsive
drug use is rooted in actions of drugs of abuse on a vulnerable
brain. Changing motivational circuitry is followed by associ-
ated alterations in several psychological functions, such as
decision making. Such drug-induced decision making mal-
functions are evidenced to be generalized to real-life circum-
stances. This provides researchers to investigate addicts brain
disorders via tasks which simulate real-life decision making
situations. The Iowa Gambling Task (IGT) (Bechara, Dama-
sio, Damasio, & Anderson, 1994), which originally was in-
troduced to shed light on decision making deficits in bilateral

ventromedial prefrontal patients, is a widely used framework
for measuring decision making ability. In ABCD version of
the task, participants make a series of 100 choices from four
decks of cards. Two of the decks are advantageous (decks
C and D) and two of them are disadvantageous (decks A and
B). The subjects goal is to maximize its net score across trials.
The two disadvantageous (bad) decks lead to relatively high
gains ($100) but also to occasional large losses ($125), which
result in an average loss of -$25 per trial. The two advanta-
geous (good) decks lead to lower gains each time ($50) but
produce smaller losses, resulting in an average gain of +$25
per trial. Performance of a subject in the task is defined as dif-
ference of number of cards selected from good decks minus
cards selected from back decks (net score: (C+D) (A+B)).
In respect of healthy subject, Substance Dependent Individu-
als (SDIs) commonly show decision making deficit in gam-
bling task(Grant, Contoreggi, & London, 2000; Bechara et
al., 2001; Bechara & Damasio, 2002; Bechara & Martin,
2004) To understand processes behind decision making im-
pairments in gambling task, Busemeyer and Stout (2002) in
their seminal work, have utilized cognitive modeling method.
This approach makes it possible to track the revealed behavior
of the decision maker back to its underlying causes. The mod-
els are designed such that their parameters have meaningful
cognitive interpretations, so the modeler can reduce observed
behavior to parameters values (or model structure) and gains
information about the cognitive properties of modeled sub-
ject(s). In the same motivational line with previous works
(Kalidindi & Bowman, 2007; Stout, Busemeyer, Lin, Grant,
& Bonson, 2004) in this study we are to identify the prin-
cipal components which influence behavior of control group
and SDIs. SDI subjects (n=217) are male treatment seeking
opioid dependents (based on DMS-IV (American Psychiatric
Association, 2000)) referred to Iranian National Center for
Addictive Studies (INCAS). Age, sex and education matched
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control subjects (n=130) are included from patients relatives
with no history of drug abuse (except cigarette). Demograph-
ics of control and SDI subjects are presented in Table . As
Table shows, both groups have poor IGT performance with
reference to previous studies (net score < 10) (Bechara et
al., 2001). Reinforcement Learning (RL) framework (Sutton
& Barto, 1998) is used to answer why subjects have deci-
sion making deficit in IGT. Furthermore, SDIs have signifi-
cant weaker performance compared with healthy subjects in
IGT (P ≤ 0.002); we also make use of modeling approach to
see what lies beneath this difference. The following section
is dedicated to introduction of RL models used in this paper.
The method of estimating models’ free parameters, using IGT
data will be presented in the third part. Findings are discussed
and concluded based on numerical results in the last section.

Model Description
RL addresses the problem of decision making in an uncertain
environment. Alongside with rich mathematical foundation,
it has been shown that RL has strong structural relevancy to
underlying neural mechanism of value learning and action se-
lection (Daw, 2003). In order to act optimally, a RL agent de-
sires to know expected value of each action. So, it makes use
of precepts and rewards to learn value of states and actions,
and then utilizes the result of learning for decision making.
There are various methods for value learning and action se-
lection. Each method is governed by some free parameters
which shape behavior of the model. In the following section
we introduce some variants of RL family.

Learning Methods
After the decision maker makes a decision and experiences
the result, it weights positive and negative rewards differently
as in prospect theory (Kahneman & Tversky, 1979). Based on
Expectancy-Valence Learning Model (Busemeyer & Stout,
2002), this property can be modeled with a weighted average
between rewards and punishments:

rt(a) = w.r+
t (a)+ (1−w).r−t (a) (1)

Where r+
t (a) and r−t (a) are respectively reward and punish-

ment received after execution of action a. Parameter w is
named valence weight (0 ≤ w ≤ 1) (Kalidindi & Bowman,
2007). Values of w near 1 mean reward-seeking characteristic
and values near 0 indicate harm avoidance behavior. The
question of how the valence signal rt(a) can be used to
update the value of each action is answered in the following.

Sample Averaging (Kalidindi & Bowman, 2007) The
value of each action can be estimated as the average of all
valences experienced before:

QT (a) =
1

Ka

T

∑
t=1

rt(a) (2)

Ka is the total number of times action a has been taken

prior to time T .

Variance-Driven Learning (Kalidindi & Bowman, 2007)
In this method, risk seeking behavior is aimed to be modeled:

QT (a) =
1

Ka

T

∑
t=1

(rt (a)− rt(a))2 (3)

rt(a) is the average of past received reinforcers.

Frequency-Driven Learning (Kalidindi & Bowman,
2007) Instead of using magnitude of received valences for
value prediction, frequency of valences is used in this model:

Qt (a) =

⎧⎨
⎩

Qt−1 (a)+1 rt (a) > 0
Qt−1 (a)−1 rt (a) < 0
Qt (a) else

(4)

Error-Driven Learning Learning in this method is done
via calculating the error signal which is the difference be-
tween expected and observed value of an action. The error
signal is used to update the value of the respective action:

Qt (a) = Qt−1 (a)+ γ(rt (a)−Qt−1 (a)) (5)

In this model, recent experiences are weighted more than dis-
tant ones. In (5) the parameter γ is learning rate (0 < γ < 1).
Large value of γ makes fast changes in estimated values
and rapid forgetting of previous experiences, while small
values produce slow changes and declines the effect of recent
experiences.

Error-Frequency Learning (Kalidindi & Bowman, 2007)
This method is similar to the previous one, but instead of us-
ing the magnitude of received valence to update the value of
an action, the number of times that reward (punishment) has
been received is used for value updating:

Qt (a) =

⎧⎨
⎩

Qt−1 (a)+ γ(1−Qt−1 (a)) rt (a) > 0
Qt−1 (a)− γ(1+Qt−1 (a)) rt (a) < 0
(1− γ)Qt−1 (a) else

(6)

Reversal Learning (Kalidindi & Bowman, 2007) The logic
behind reversal learning is that learning is slowed down if the
expected value of executing an action is in the opposite sign
of its experienced value:

i f sign(Qt−1(a)) = sign(Z) then
Qt(a) = Z

else
Qt(a) = Qt−1(a)+ λ .γ(rt(a)−Qt−1(a))

where
Z = Qt−1(a)+ γ(rt(a)−Qt−1(a))

(7)
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Table 1: Demographic characteristics and two scores of IGT in two groups of subjects
Variables Age (year) Education (year) (C+D) – (A+B) (B+D) –(A+C)

Groups
Healthy Subjects (n=130) 30.25 ± 8.77 12.03 ± 3.77 6.88 ± 28.47 19.65 ± 21.55

Opioid Dependent Subjects (n=217) 29.87 ± 7.60 11.49 ± 3.00 -2.39 ± 26.10 17.52 ± 21.85

Parameter λ is reversal-deficit rate (0 < λ < 1). If λ = 1,
then reversal learning and error driven algorithms will be the
same, which means that learning will not be slowed down in
any case.

Amygdala-OFC Learning This method is inspired by
computational model of amygdala introduced by (Balkenius
& Morén, 2001). The model assumes the role of amygdala in
value learning:

QA
t (a) = QA

t−1 (a)+ γA
[
Max (R−QA

t−1 (a) ,0)
]

(8)

And the role of orbitofrontal cortex (OFC) for devaluation of
estimations previously learned by amygdala:

i f R �= 0 then
QO

t (a) =
QO

t−1 (a)+ γO
[
Max

(
QA

t−1 (a)−R,0
)− QO

t−1

]
else

QO
t (a) =

QO
t−1 (a)+ γO

[
Max

(
QA

t−1 (a)−QO
t−1,0

) ]
(9)

Qt(a) is final estimated value which is output of OFC sub-
tracted from amygdalas output:

Qt (a) = QA
t (a)−QO

t (a) (10)

γA and γA are respectively learning rates in amygdala and
OFC (0 ≤ γA ≤ 1,0 ≤ γO ≤ 1). Notice that, in this model,
because of parallel role of γA and γO with w, positive and
negative reinforcers are not weighted.

Action Selection Methods Values learned by the learning
module are used for action selection. The main challenge is
deciding when to exploit in previous knowledge and when
to explore the environment. Exploration allows the agent to
gain better estimations of expected values. Followings are
two well-known methods for balancing exploration and ex-
ploitation strategies.
ε-Greedy Action Selection The parameter ε in the ε-greedy
algorithm is the probability of exploration and 1− ε is the
probability of selecting the action with the highest expected
value (0 < ε < 1). Exploration here means each action is
equiprobable to be selected, regardless of its expected value.
Let X(t) be a random number with uniform distribution that
ranges form 0 to 1, G set of possible actions at time t and Z
set of actions that have maximum Q-value at time t. Then

probability of selecting each action is as follow:

i f X (t) > ε then

P(a) =
{

1/|Z| a ∈ Z
0 a /∈ Z

else

P(a) =
{

1/|G| a ∈ G
0 a /∈ G

(11)

Softmax Action Selection In this model, the probability of
choosing action a at time t is exponentially proportional to its
expected value. So unlike the previous method, probability
of selecting an action is sensitive to its value:

Pt (a) =
eβ .Qt−1(a)

∑i eβ .Qt−1(ai)
(12)

Estimation Method
Reinforcement learning model is a nonlinear, stochastic and
dynamic system with a set of free parameters (P). Obviously,
behavior of a model is sensitive to its parameters’ values. We
desire to find parameter vector which makes model’s out-
put most similar to observed behavior from subjects in IGT
For this purpose, we used maximum likelihood estimation
method. To calculate the likelihood function, we need to
have the system’s (Control and SDI) outputs at each period
of time (T = 1 . . .100) and also probability distribution func-
tion of model output at each period of time for each parame-
ter vector (Pj = (β ,w,γ)). The former, denoted by OC,i,t (ak)
(for control group) and OA,i,t(ak) (for SDIs), is total num-
ber of choosing action ak at time t. The later, denoted by
Prt(Pj,ak), is the probability of choosing action ak at time t
by the model governed by Pj. In order to estimate Prt(Pj,ak),
due to model’s stochastic character, the model has been simu-
lated for 3000 times for each Pj and the average of outputs are
used for estimation of Prt(Pj,ak). Therefore, the likelihood
function can be formulated as:

fControl (y
∣∣ Pj

)
=

N

∏
i=1

100

∏
t=1

4

∏
k=1

Prt(Pj, ak)
OC,i,t(ak) (13)

f SDI (y
∣∣ Pj

)
=

M

∏
i=1

100

∏
t=1

4

∏
k=1

Prt(Pj, ak)
OA,i,t(ak) (14)

k stands for taking actions A, B, C or D by the agent (1 ≤
k ≤ 4). N and M are the number of Control and SDI subjects
respectively. The maximum likelihood rule implies:

P∗
Control = argmax

j
fControl(y|Pj) (15)
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P∗
SDI = argmax

j
f SDI(y|Pj) (16)

For models with less than four degree of freedom we used
exhaustive search to find parameter vector which satisfies (15)
and (16). For models with four degree of freedom because of
intractable computational time of exhaustive search, genetic
algorithm method was used.

Results and Conclusion
Numerical results of estimations are presented in Table 2.
Bayesian Information Criterion (BIC) which considers both
model fitness and complexity is used for model selection:

BIC = −2ln f
(
y
∣∣ P̂j

)
+ klnn (17)

In (17), n represents the number of data points and k de-
notes degree of freedom (number of free parameters) in the
model. Based on BIC criteria, the best-fitted model for both
groups, SDI and control subjects, is error-frequency learning
with softmax rule for action selection. Optimal parameters
are (Pj = (β ,w,γ)):

P∗
Control = (0.70, 0.35, 0.2) (18)

P∗
SDI = (0.50, 0.15, 0.35) (19)

The best-fitted models were validated for control group by
chi-square goodness of fit test for each trial:

chi− square(trialt) =

∑4
k=1

(∑N
i=1 OC,i,t(ak)−N∗Prt (P∗

Control ,ak))
2

N∗Prt(P∗
Control , ak)

As like, for SDIs (20) was used with corresponding val-
ues. The best fitted model for control group satisfies fitness
criteria (d f = 3, p < 0.01) in 96 trails (out of 100 trial) and
in SDIs best fitted model satisfies 94 trails (out of 100 trial).
These results indicate model validity for describing subjects’
choices. Performance comparison between best-fitted model
for control group and averaged control data is presented in
Figure 1 (notice that goal of estimation was not fitting perfor-
mances, estimations are done so that model’s selections are
best fitted on subjects’ choices).

Influencing control subjects by reinforcer frequency mis-
guides them to choose bad cards. This may justify poor per-
formance of control group (net score = 6.2 < 10). In previ-
ous modeling of IGT, sample-averaging provides best match
model for healthy subjects (Kalidindi & Bowman, 2007).
Ambiguity of gambling concepts such as amount of facsimile
monetary rewards and punishments among Iranian subjects,
due to religious limitations for gambling in Islamic law, may
play an important role in frequency-based valuation in control
subjects (Ekhtiari, Behzadi, Jannati, & Mokri, 2002). Cul-
tural aspects of risky decision making (Weber & Hsee, 1998)
such as aversion from frequent punishment or priority of pun-
ishment times over its value in emotional process of expected
choice out comes may act as another possible cause.
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Figure 1: Performance of control subjects and best-fitted
model
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Figure 2: Performance of SDIs and best-fitted model

Figure 2 shows performance of SDIs and best-fitted model.
Like control subjects, poor performance of SDIs (net score =
-2.3 < 10) is partially down to ignorance of reward magni-
tude. It may be as a result of depression of neural processing
in prefrontal parts after chronic exposure to drugs (Jentsch
& Taylor, 1999). This decrease in activity of frontocortical
parts may increase activity of sub cortical dopamine regions
(Meyer-Lindenberg et al., 2002). Thus, decision making be-
come more dependent on basal ganglia, which is known to
have important role in representation of reward and punish-
ment frequency (Frank & Claus, 2006). But, if both groups
decide based on reinforcer frequency, what causes substantial
difference between controls and SDIs performances?

Figure 3 shows performance of the softmax error-
frequency model with respect to its parameters at point P∗

SDI .
As it is evident, performance of the model is sensitive to
parameter w (valence weight) and the two other parameters
have no significant effect on performance of the model. (at
w = 0.35 the SDIs model meets performance of best-fitted
model for control group). So, it seems deviation to harm
avoidance in SDIs, in addition to being under the influence
of reward frequency, is the major factor of SDIs poor per-
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Table 2: Parameter Estimation Results

ε -Greedy Action Selection Softmax Action Selection
Learning ŵ ε̂ γ̂ λ̂ γ̂A γ̂O BIC ŵ ε̂ γ̂ λ̂ γ̂A γ̂O BIC

Sample Averaging
Control 0.00 0.88 - - - - 35672 0.36 0.00 - - - - 35936

SDI 0.66 0.94 - - - - 59937 0.78 0.00 - - - - 60158
Variance Driven

Control 0.68 0.00 - - - - 35978 0.67 0.80 - - - - 35821
SDI 0.89 0.95 - - - - 59881 0.67 0.80 - - - - 59872

Frequency Driven
Control 0.00 0.77 - - - - 35425 0.46 0.04 - - - - 35481

SDI 0.24 0.81 - - - - 59442 0.00 0.07 - - - - 59411
Error Driven

Control 0.00 0.55 1.00 - - - 35436 0.90 0.08 0.30 - - - 35921
SDI 0.00 0.60 1.00 - - - 59547 0.95 0.10 0.90 - - - 59948

Error Frequency
Control 0.35 0.80 0.10 - - - 35423 0.35 0.70 0.20 - - - 35414

SDI 0.20 0.55 1.00 - - - 59439 0.15 0.50 0.35 - - - 59395
Reversal Learning

Control 0.60 0.80 0.33 0.34 - - 35534 0.36 0.00 0.12 0.14 - - 35566
SDI 0.57 0.83 0.31 0.27 - - 59503 0.45 0.00 0.25 0.16 - - 59531

Amygdala-OFC
Control - 0.70 - - 0.20 0.75 35570 - 0.00 - - 0.10 0.05 35965

SDI - 0.80 - - 0.20 0.75 59542 - 0.00 - - 0.05 0.00 59915
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Figure 3: Performance of the model with respect to its param-
eters at point P∗

SDI

formance. These findings are compatible with various lines
of investigations that suggest alteration of sensitivity to re-
inforcement in chronic substance users (Ersche et al., 2005).
Also higher degree of punishment aversion and harm avoid-
ance is reported in previous studies with self report measures
in chronic abusers and treatment seeking subjects (Abbate-
Daga, Amianto, Rogna, & Fassino, 2007). Fitness of softmax
model over ε-Greedy is consistent with previous modeling of
gambling task (Daw, O’Doherty, Dayan, Seymour, & Dolan,

2006). In ABCD version of IGT, first cards of bad decks are
more rewarding in comparison with first cards of good decks.
Such card arrangement causes ε-Greedy exploration strategy
to choose more cards from bad decks in few first choices.
This early behavioral convergence differs from human one
that shows more exploratory pattern in first choices. Soft-
max rule does not suffer from this fallacy, (because of its
value sensitive exploration strategy) and this property may
underlie its superiority over ε-Greedy method. Designing
new variant versions of IGT to evaluate error frequency learn-
ing in healthy subjects, providing some statistical opportu-
nity to fit the models for each subject (that makes it possible
to have some analysis to assess significance of differences
among models and among groups), clustering opioid depen-
dent subjects into different groups (based on addiction sever-
ity, possible comorbidities, history of imprisonment and anti-
social behaviors and types of drug of usage, Heroin injection,
Opium smoking or Heroin sniffing and smoking) and per-
forming other studies on non-treatment seeker, abstinent and
under substitution treatment (such as methadone) SDI groups
can be the next steps toward better understanding of addictive
behavior.
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