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Abstract

Behavioral evidence suggests that instrumental conditioning is governed by two forms of action control: a goal-directed
and a habit learning process. Model-based reinforcement learning (RL) has been argued to underlie the goal-directed
process; however, the way in which it interacts with habits and the structure of the habitual process has remained unclear.
According to a flat architecture, the habitual process corresponds to model-free RL, and its interaction with the goal-
directed process is coordinated by an external arbitration mechanism. Alternatively, the interaction between these systems
has recently been argued to be hierarchical, such that the formation of action sequences underlies habit learning and a
goal-directed process selects between goal-directed actions and habitual sequences of actions to reach the goal. Here we
used a two-stage decision-making task to test predictions from these accounts. The hierarchical account predicts that,
because they are tied to each other as an action sequence, selecting a habitual action in the first stage will be followed by a
habitual action in the second stage, whereas the flat account predicts that the statuses of the first and second stage actions
are independent of each other. We found, based on subjects’ choices and reaction times, that human subjects combined
single actions to build action sequences and that the formation of such action sequences was sufficient to explain habitual
actions. Furthermore, based on Bayesian model comparison, a family of hierarchical RL models, assuming a hierarchical
interaction between habit and goal-directed processes, provided a better fit of the subjects’ behavior than a family of flat
models. Although these findings do not rule out all possible model-free accounts of instrumental conditioning, they do
show such accounts are not necessary to explain habitual actions and provide a new basis for understanding how goal-
directed and habitual action control interact.
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Introduction

There is now considerable evidence from studies of instrumental

conditioning in rats and humans that the performance of reward-

related actions reflects the involvement of two learning processes, one

controlling the acquisition of goal-directed actions and the other of

habits [1–4]. This evidence suggests that goal-directed decision-

making involves deliberating over the consequences of alternative

actions in order to predict their outcomes after which action selection

is guided by the value of the predicted outcome of each action. In this

respect, action evaluation relies on the representation of contingencies

between actions and outcomes as well as the value of the outcomes,

which in sum constitute a model of the environment. In contrast, habitual

actions reflect the tendency of individuals to repeat behaviors that

have led to desirable outcomes in the past and respect neither their

causal relationship to, nor the value of their consequences. As such,

they are not guided by a model of the environment, and are relatively

inflexible in the face of environmental changes [5–7].

Although these features of goal-directed and habitual action are

reasonably well accepted, the structure of habitual control, and the

way in which it interacts with the goal-directed process in exerting

that control, is not well understood. Two types of architecture have

been proposed: a hierarchical architecture and a flat architecture.

We have recently described a version of the hierarchical structure in

the context of advancing a new theory of habits [8]. Although habits

are usually described as single step actions, their tendency to

combine or chunk with other actions [9–15] and their insensitivity

to changes in the value of, and the causal relationship to, their

consequences [2,16] suggests that they may best be viewed as action

sequences [8]. On this view habit sequences are represented

independently of the individual actions and outcomes embedded in

them such that the decision-maker treats the whole sequence of

actions as a single response unit. As a consequence, the evaluation of

action sequences is divorced from offline environmental changes in

individual action-outcome contingencies or the value of outcomes

inside the sequence boundaries and, as they are no longer guided by

the model of the environment [8], are executed irrespective of the

outcome of each individual action [12,17]; i.e., the actions run off in

an order predetermined by the sequence, without requiring

immediate feedback.
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On this hierarchical view, such action sequences are utilized by a

global goal-directed system in order to efficiently reach its goals.

This is achieved by learning the contingencies between action

sequences and goals and assessing at each decision point whether

there is a habit that can achieve that goal. If there is, it executes that

habit after which control returns to the goal-directed system. In

essence, the goal-directed system functions at a higher level and

selects which habit should be executed whereas the role of habits is

limited to the efficient implementation of the decisions made by the

goal-directed process [8,18] (see [19] for a review of other schemas).

Assume, for example, you are deciding whether to go to a

restaurant on this side of the road or on the other side of the road (

Figure 1A). The goal-directed system evaluates both options, and

decides to go to the restaurant across the road. It thus triggers a

‘crossing the road’ habit, and transfers the control to the habitual

system. The habit is an action sequence composed of several

individual actions: (1) head to the crossing point, (2) look left, and

(3) cross the road. Individual actions are executed one after

another, and after they finish, the control transfers back to the

goal-directed system to make the next decision such as, for

example, choosing from the menu in the restaurant.

In contrast to the hierarchical architecture, the flat architecture

treats habits as single step actions rather than action sequences

(e.g. [5]). At each step, an arbitration mechanism decides whether

the next action should be controlled by the goal-directed system or

the habitual system. In the context of the above example, at the

beginning the arbitration mechanism selects one of the systems to

decide whether to go to the restaurant on this side of the road or to

the crossing point. Again, at the crossing point, the arbitration

mechanism selects one of the systems to decide whether to look

left, or right, and similarly at each future step the arbitration

mechanism selects one of the systems to control behavior

(Figure 1B). It should be clear, therefore, that, in the flat approach,

both systems are at the same level and action evaluation happens

in both processes; both systems evaluate available alternatives, and

the arbitration mechanism determines how these two evaluations

combine to make the final decision.

From the flat perspective, another difference between goal-

directed and habitual processes lies in how they evaluate actions.

The goal-directed process obeys the same principles sketched

earlier: learning the model of the environment, and making

Author Summary

In order to make choices that lead to desirable outcomes,
individuals tend to deliberate over the consequences of
various alternatives. This goal-directed deliberation is,
however, slow and cognitively demanding. As a conse-
quence, under appropriate conditions decision-making
can become habitual and automatic. The nature of these
habitual actions, how they are learned, expressed, and
interact with the goal-directed process is not clearly
understood. Here we report that (1) habits interact with
the goal-directed process in a hierarchical manner (i.e., the
goal-directed system selects a goal, and then determines
which habit should be executed to reach that goal), and (2)
habits are learned sequences of actions that, once
triggered by the goal-directed process, can be expressed
quickly and in an efficient manner. The findings provide
critical new experimental and computational information
on the nature of habits and how they interact with the
goal-directed decision-making.

Figure 1. An example illustrating the difference between the hierarchical and flat organizations. (A) Hierarchical interaction. The goal-
directed system (GD) selects goals and decides whether to go to a restaurant on this side of the road (Rr1) or on the other side of the road (Rr2). If it
chooses to go to the restaurant on the other side of the road, then it triggers the habit of crossing the road and control transfers to the habitual
process. After execution of the habit finishes, control returns to the goal-directed system. (B) Flat interaction. At each decision point, the arbitration
mechanism (Ar) decides whether the next action should be controlled by the goal-directed system or the habitual system (H).
doi:10.1371/journal.pcbi.1003364.g001
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predictions based on that model (model-based evaluation). In

contrast, the habitual system is model-free and evaluates actions

based on their ‘cached’ reward history without searching through

the action-outcome contingencies [5,7,20–22].

More recently, Daw et al [23] have exploited the difference

between model-free and model-based evaluation to investigate the

interaction of goal-directed and habit processes in a flat structure

reasoning that, because model-free evaluation is retrospective,

chaining predictions backward across previous trials, and model-

based evaluation is prospective, directly assessing available future

possibilities, it is possible to distinguish the two using a sequential,

multistage choice task. In this task subjects first make a binary choice

(the first stage) then transition to the second stage in which they

make a second choice to earn a reward. The best choice at the

second stage varies depending on the first choice and, to maintain a

constant trade-off between habitual and goal-directed systems, the

reward probabilities in the second stage are continually varied. By

examining first stage choices, Daw et al [23] were able to find

evidence of mixed goal-directed and habitual predictions.

Here we show that first stage habitual actions, explained by the

model-free evaluation in previous work, can also be explained by

assuming that first stage actions chunk with second stage actions,

reducing the source of habitual actions to the formation of action

sequences. Based on this finding we next examined specific

predictions of each account. With regard to the two-stage task, the

flat account predicts that feedback received after the execution of

an action will affect subsequent decisions and, therefore, that

arbitration between goal-directed and habit controllers will recur

anew at each stage. As a consequence, action-control at each stage

of the task should be independently established; in particular it

should be noted that action control in stage two should not depend

on stage one. In contrast, because our hierarchical account treats

habits as action sequences, and because the execution of habits is

open-loop, it predicts that, during the execution of a habit, actions

will be executed one after another without considering feedback

from the environment during the sequence and, therefore, that,

when habitual, the action taken at stage 2 is already determined

when starting the habit sequence at stage 1. We made two further

predictions from the hierarchical account: first, because of their

relative freedom from feedback, action sequences should be

elicited more quickly than single actions [24] predicting that, when

habitual, reaction times between stage 1 and stage 2 actions will be

faster than when non-habitual. Second, and based on these

predictions, we anticipated that the hierarchical model would

better fit the performance of subjects working on this two-stage

task than the flat model.

Results

Fifteen subjects completed a two-stage decision-making task

(Figure 2), in which each trial started with a choice between two key

presses (first stage actions; A1 vs. A2). Each key press resulted in the

appearance of either of two slot machines (denoted by S1 and S2

and distinguished by their colors) in a probabilistic manner. Next, at

the slot machines, subjects again chose between two key presses

(second stage actions; A1 versus A2), and, as a result, received an

outcome; i.e., either a monetary reward or a neutral outcome. At

the first stage, A1 most commonly led to S1, and A2 to S2 (common

transitions; 70% of the time). In a minority of trials, A1 led to S2,

and A2 to S1 (rare transitions; 30% of the time). This relationship

was kept fixed throughout the test. Each of the second stage

responses at the slot machines earned a reward either at a high

probability (0.7) or a low probability (0.2). In order to ensure the

subjects kept searching for the best keys and slot machines during

the test, at each trial, with a small probability (1:7), the rewarding

probability of each key changed randomly to either the high or low

probability. Each participant completed 270 trials.

Goal-directed and habitual performance on the two-
stage task

In the analysis, we first sought to establish whether decision-

making in this task is goal-directed, habitual or a mixture of both

Figure 2. Task description. (A) Illustration of the timeline of events within a trial. Initially a black screen is presented, and the subject can choose
between pressing A1, or A2 (first stage choice). After a key is pressed, one of the slot machines is presented, and the subject can again choose
between pressing A1, and A2 (second stage choice). Choices at the second stage are reinforced by monetary reward. (B) Structure of the task. One of
the key presses commonly leads to one of slot machines (70% of the time), and the other key commonly leads to the other slot machine. Choices at
the second stage are reinforced either by a high probability (0.7) or a low probability (0.2). With a small probability (1/7), the rewarding probability of
each key changes randomly to either the high or low probability.
doi:10.1371/journal.pcbi.1003364.g002
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and, if both, to assess whether goal-directed and habitual control

interact according to a flat structure or a hierarchical structure.

The first question can be answered by looking at the likelihood

of the subjects repeating the same first stage action on each trial

based on feedback received on the previous trial [23]. Take for

example a trial in which a subject presses A1 and transfers to the

S2 slot machine (which is rare result of choosing A1). If the

participant presses a button of that slot machine and receives a

reward, this implies S2 is probably a good slot machine and, if the

decision-making is goal-directed, in the first stage of the next trial

the subject should try to reach this S2 slot machine again. It is

expected therefore, that the probability that the subject will press

A2 will increase because it is this key that (in this example)

commonly leads to S2 (cf. Figure 3B). In contrast, if decisions are

habitual, subjects should not be guided by contingencies between

the responses and slot machines, and should tend to stay on the

previously rewarded action, A1 (Figure 3A).

The results are presented in Figure 3C, which shows the

probability of repeating the same action computed across all

subjects and trials. We analyzed the data using mixed-effects

logistic regression analyses by taking all coefficients as random

effects across subjects (see Materials & Methods: Behavioral

Analysis). Results show that being rewarded in the previous trial

increased the chance of staying on the same action, irrespective of

whether it was a rare or a common transition (main effect of

reward; coefficient estimate = 0.61; SE = 0.09; p,3e-11), which

suggests that habits constitute a component of the behavior. On

the other hand, this increase was higher if the previous trial was a

common transition (and lower after an unrewarded trial),

suggesting that subjects also utilized their knowledge about the

task structure (reward-transition interaction; coefficient esti-

mate = 0.41; SE = 0.11; p,5e-4). Therefore, the subjects’ behavior

was a mixture of both goal-directed and habitual actions. Also, as

the figure shows, the probability of staying on the same action is

generally higher than not staying on it, irrespective of reward and

transition type in the previous trial (the intercept term is

significantly positive; estimate = 1.52; SE = 0.20; p,10e-14),

which reflects a general tendency of animals and humans to

repeat previous actions [25–27].

In previous studies, a hybrid model of model-free and model-

based reinforcement learning (RL) was advanced to explain the

behavior of subjects on this task based on the flat structure [23,28–

30]. According to this model, action values learned in model-free

RL, roughly, reflect the frequency of the action rewarded on

previous trials irrespective of the action-outcome contingency (i.e.,

in the current task, which key generates which slot machine) and,

as such, these values underlie the habitual component of the

model. These model-free values are then mixed with the values

provided by the goal-directed system (modeled by a model-based

RL) to produce the final values which guide action selection. As a

consequence, and consistent with the above results, we should

expect to see a combination of both habitual and goal-directed

actions. The prediction from this hybrid model is illustrated in

Figure 4A.

A hierarchical structure can, however, also be used to explain

these results. For example, assume that a subject presses A1 in the

first stage, and A2 in the second stage and receives a reward. As a

result, the goal-directed system learns that contingency between

the A1A2 action sequence and the reward is increased and so it

should be more likely to repeat the action sequence in the next

trial, whether or not the reward was received from the S1 or S2

slot machine (i.e., the common or rare transition). As the

evaluation and performance of an action sequence is not guided

by the task structure (i.e. the key-slot machine association), from

this perspective it constitutes the habitual component of the

behavior. All actions - either single action (e.g., A1) or action

sequences (e.g., A1A2)-, will be subject to the goal-directed action

selection process, such that actions with higher values will be

selected with a higher probability. As a consequence, this implies

that the behavior will be a mixture of habitual (when action

sequences are selected) and goal-directed (when single actions are

selected) actions and that this mix of actions can be generated

Figure 3. First-stage choices. (A) Modeled habitual action control on the two–stage task: Under habitual control a first stage action that has been
eventually reinforced (reward) in the previous trial is more likely to be repeated (higher stay probability), regardless of whether the repeated action
commonly leads to the same slot machine (common) or not (rare). (B) Modeled goal-directed action control on the two–stage task: Under goal-
directed action control a reinforced action is repeated if it commonly leads to the same slot machine in which reward is received, otherwise the other
action is selected. (C) Data from the experiment: Actual stay probabilities averaged over all subjects and trials. When the previous trial was rewarded,
stay probability was generally higher (as in habitual control), and was also higher when the previous trial was a common transition (as in goal-
directed control). Thus, the responses of the subjects in the experiment were found to be a mixture of both habitual and goal-directed action control.
Error bars: 1 SEM.
doi:10.1371/journal.pcbi.1003364.g003
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without the need for the model-free component or an explicit

arbitration mechanism used in the flat structure. This prediction is

illustrated in Figure 4B.

The interaction of goal-directed actions and habit
sequences in stage 2 performance

Although both approaches are able to explain the mixture of

behavioral control in the first stage, they make different

predictions about second stage choices. This is because, if the

observed habitual behavior is due to the execution of an action

sequence, rather than cached values as the model-free account

supposes, then we expect the subject to repeat the whole action

sequence in the next trial, not just the first stage action.

Staying on the same first stage action in the next trial after being

rewarded implies that this is probably a habitual response and so

we expect the subject to repeat the second stage action as well,

even if the slot machine is different from the one in the previous

trial. In contrast, if the subject switches to the other first stage

action, the previous action sequence is not repeated, and thus the

second stage action is not expected to be repeated if the subject

ends with a different slot machine in the next trial. In order to test

this prediction, we looked at the trials that had a different slot

machine to the one in their previous trial.

Figure 5A shows the probability of repeating the same second

stage action as a function of whether this action was rewarded

on the previous trial and the subject had subsequently taken the

same first stage action. Logistic regression conducted on second

stage choices using factors of reward, separating rewarded and

non-rewarded trials, and action, separating trials on which the

first stage action was the same from those on which it differed,

found neither an effect of reward (p.0.05), nor of action

(p.0.05) but found a significant interaction between these

factors (coefficient estimate = 1.02; SE = 0.38; p,0.008), indicat-

ing that, during the execution of habitual responses, subjects

tended to repeat the second stage action. This interaction

remained significant even when we restricted the analysis either

to trials after rare transitions (coefficient estimate = 1.33;

SE = 0.60; p,0.05) or after common transitions (coefficient

estimate = 0.93; SE = 0.38; p,0.05). Importantly, the fact that

the effect of the reward was not significant rules out the

possibility that the effect was due to the generalization of the

values across slot machines.

Simulations of the flat and hierarchical models are presented in

Figure 5B and C, respectively. As predicted, the hierarchical

structure captures the pattern of the subjects’ second stage actions

(the interaction between the reward and the same first stage action;

p,0.001), whereas the flat structure is not consistent with

repeating the same action in the second stage (p.0.05).

Previously, we focused on trials with a different slot machine to

the one in the previous trial. This was because, in this condition,

flat and hierarchical accounts provide different predictions. When

the slot machine is the same, both accounts (flat and hierarchical)

predict that being rewarded in the previous trial increases the

probability of staying on the same second stage action. In addition

to this prediction, the hierarchical account predicts that when the

slot machine is the same as the one on the previous trial, this

increase should be higher than the increase when the slot machine

is different. This is because, when the slot machine is different,

staying on the same second stage action is drive by execution of the

previous action sequence whereas, when the slot machine is the

same, executing either the previous action sequence or a goal-

directed decision at the second stage can result in staying on the

same second stage action.

As a consequence we looked at the effect of being rewarded in

the previous trial, and whether the slot machine was the same as

the one in the previous trial, on the probability of staying of the

same second stage action (in the trials in which the first stage

action was the same as the previous trial).

Figure 6A shows the results. A significant main effect of reward

was found (coefficient estimate = 0.69; SE = 0.21; p,0.002)

indicating that being rewarded in the previous trial increases the

probability of taking the same second stage action, irrespective of

whether the slot machine was the same as the previous trial or not,

which is consistent with the hierarchical account. In addition, we

found a significant interaction between the effect of reward and

whether the slot machine being the same (coefficient esti-

mate = 3.46; SE = 0.51; p,3e-11), consistent with the finding that

the probability of staying on the second stage action was higher

when the second stage action was the same.

Figure 6B shows the probability of staying on the same second

stage action when the subject takes a different first stage action. As

Figure 4. Simulation of the first-stage choices. The probability of staying on the first stage action in simulations of: (A) the flat architecture; and,
(B) the hierarchical architecture. Both architectures can model the pattern of data observed in the first stage stay probabilities on the task: i.e., a
higher stay probability after being rewarded on the previous trial and an interaction between reward and transition.
doi:10.1371/journal.pcbi.1003364.g004
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predicted, because the subject did not execute the previous action

sequence, the main effect of reward was not significant (p.0.05)

but the interaction between reward and the second stage being the

same was significant (coefficient estimate = 1.72; SE = 0.40; p,3e-

5) which means that subjects tend to take the same action on the

same slot machine after being rewarded, as predicted by both

accounts.

Reaction times during habit execution
In the previous section we showed that if, after being rewarded,

the subject repeats the same first stage action, they are probably

repeating the previous action sequence and, as such, they tend to

repeat the second stage action as well. However, even in the

situation in which the subject is executing an action sequence there

will be trials on which they might not repeat the same second stage

action. In such conditions, we should suppose that either (i) the

subject took an exploratory goal-directed action in the first stage,

or (ii) the subject started an action sequence but its performance

was inhibited and control returned to the evaluation system in the

second stage. In both cases, the hierarchical account predicts that

reaction times on trials in which the second stage action is not

taken should be higher.

Figure 7A illustrates these reaction times as a function of

whether the previous trial was rewarded and the subject takes the

same second stage action (only in trials on which the slot machine

is different from that on the previous trial and the subject

subsequently takes the same first stage action). If the previous trial

is rewarded, reaction times were lower when a subject completes

an action sequence than when the second stage action was not

executed as a part of a sequence (coefficient estimate = 21.66;

SE = 0.45; p,3e-4). Importantly, the effect was not significant

when the previous trial was not rewarded (p.0.05), which rules

Figure 5. Second-stage choices. The probability of staying on the second stage action on trials for which the slot machine differs from the on one
in the previous trial: (A) The observed stay probabilities. When the subjects are rewarded and stay on the same first stage action (same), the
probability of staying on the same second stage action is higher. (B) Simulation of the flat architecture. Note that this is not consistent with the
pattern in panel (A). (C) Simulation of the hierarchical architecture, which is consistent with the pattern observed in actual stay probabilities. Error
bars: 1 SEM.
doi:10.1371/journal.pcbi.1003364.g005

Figure 6. Second-stage choices in a same vs. different state. The probability of staying on the second stage action when the same (A) or
different (B) first stage action is taken, as a function of whether the previous trial is rewarded, and whether the second stage state is the same or
different from the previous trial. Error bars: 1 SEM.
doi:10.1371/journal.pcbi.1003364.g006

Hierarchical Control of Decision-Making
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out the possibility that the observed increase in the reaction times

was because of the cost of switching to the other second stage

action.

We further asked whether the model can predict the reaction

times in the second stage. As mentioned above, at the first stage,

the goal-directed process more frequently selects actions that have

a higher contingency to reward (either single actions, or action

sequences). As such, if an action sequence has a high value, it is

likely to be selected for execution, and so we expect a low reaction

time in the second stage. For example, assume the subject has

executed action A1 in the first stage, and A2 in the second stage

and the aim is to predict whether A2 has a high or low reaction

time. It can be argued, if the value of the A1A2 action sequence is

high, that it was probably executed in the first stage, and thus the

execution of A2 is part of an action sequence (A1A2) started in the

first stage, implying the subject should show a low reaction time. In

general we assume that the reaction time in the second stage is

inversely related to the value of the action sequence that contains

that action (see Material & Methods: Hierarchical sequence based,

model based RL). In the case of this example we will have:

RT{1*probability of executing action sequence A1A2

Based on this, we calculated the predicted reaction time of the

action taken by the subject in the conditions shown in Figure 7A.

The results are shown in Figure 7B. As the figure shows, the

predicted reaction times by the model are consistent with the

pattern of reaction times observed in the data.

In general, the above analysis of stage 2 performance and this

analysis of reaction times implies that (i) when the previous trial is

rewarded, (ii) the same first stage action is taken, and (iii) the

reaction time is low, then the subject is most likely performing an

action sequence. As a consequence it is expected to repeat the

same second stage action, even on a different slot machine to the

one in the previous trial. In order to more closely examine this

relationship we used conditional inference trees and partitioned

second stage actions into whether they involved staying or

switching to the other action based on the above three factors

(see Materials & Methods: Behavioral Analysis for more details).

The results are shown in Figure 8. As the figure shows, when the

previous trial was not rewarded (node # 1 ‘no reward’ condition),

staying on the same second stage action was independent of either

whether the first stage action was repeated or the reaction time

was low (p.0.05; permutation test). If the previous trial was

rewarded (node # 1 ‘reward’ condition) then, if the reaction time

was high (node #2 RT.0.437s) or the reaction time was low but

the subject doesn’t repeat the first stage action (node #3 ‘different’

condition), then again the second stage action was not repeated.

Only when: (i) the previous trial was rewarded, (ii) the subject took

the same first stage action, and (iii) their reaction time was low

(node #3 ‘same’ condition), did the subject repeat the second stage

action, consistent with the prediction of the hierarchical account.

Behavioral modeling: Bayesian model selection
The results described in the previous sections suggest that a

hierarchical structure better characterizes the effect of feedback

from the previous trial on performance on the subsequent trial.

However, choices are generally guided by the feedback from all

previous trials, not just the immediately prior trial. As such, it is

still to be established which framework better captures behavior in

this more general condition.

We used a Bayesian model selection method to establish which

framework produces choices that are the most similar to the

subjects’ actions. Both flat and hierarchical architectures have

different variants with different degrees of freedom. As such, we

compared a family of flat models with a family of hierarchical

models [31], where each family consists of a complex model, and

its nested simpler models. The results (Table 1) show that, given

the subjects’ data, the hierarchical family is more likely than the

flat family to produces choices similar to those made by the

subjects. We found that the exceedance probability in favor of the

hierarchical family was 0.99 meaning, roughly, that we can be

99% confident that the hierarchical family generated the observed

data.

In the hierarchical family, the probabilities of taking actions in

the second stage are partially based on the probability of taking an

action sequence in the first stage. As these second stage choices are

the canonical difference between the two families, we expected

that removing the effect of action sequences on the second stage

choices would reduce the fit of the hierarchical account to data.

Figure 7. Reaction times in the second-stage. (A) Reaction time (RT) in the second stage action when the same first stage action was taken as a
function of whether the same second stage action was taken and whether pervious trial is rewarded (only calculated for trials on which the second
stage state was different from the previous trial). (B) Predicted reaction times by the model (a.u. : arbitrary unit). Error bars: 1 SEM.
doi:10.1371/journal.pcbi.1003364.g007
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Thus we generated a family of hierarchical models similar to

Table 1. but with the effect of action sequences on the second stage

actions removed, and compared the generated family with the

family of hierarchical models presented in Table 1 (see Materials &

Methods: Hierarchical model-based, sequence-based RL). Results

indicated that the exceedance probability in favor of the family in

which the performance of action sequences was reflected in second

stage choices was 0.99, confirming that the selection of an action

sequence in the first stage increased the probability of taking the

second element of the action sequence in the next stage.

Table 1 represents the model comparison results within each

family. The parameter estimates for the best fitting model from

each family in terms of the exceedance probabilities [32] are

presented in Table 2. The best fitting models from each family

were simulated in the task conditions to produce Figure 4 and

Figure 5.

Discussion

Although prior research has suggested that goal-directed and

habitual actions should be conceived as single step actions

organized according to a flat architecture (e.g. [5,23]), the results

of the current experiment found that: (i) human subjects combined

actions together to form action sequences, as revealed by the open-

loop execution of sequences of actions and reaction times in the

current task, and, therefore, that action sequences constituted a

necessary component of behavior; (ii) the use of action sequences

by human subjects was sufficient to explain habitual decisions on

this task, meaning choices that were not guided by action-outcome

contingencies; and, (iii) a goal-directed system assessing both

actions and action sequences in a hierarchical manner explained

behavior better than a flat model attributing habits to model-free

evaluation.

Furthermore, although hierarchical models have had a long-

standing role in decision-making [11,13,15,33–37], here we

provide direct experimental evidence for the role of these models

in understanding the operation and interaction of goal-directed

and habitual actions. We used a version of the two-stage

discrimination task described by Daw et al [23] in which the

ambiguity of the first stage predictions by both actions and stimuli

was reduced by removing the explicit predictive cues of previous

versions. Using this task we found, as previously described, that

action selection in the first stage reflected a mixture of goal-

directed and habitual strategies. The two accounts diverge with

respect to the status of the second stage actions; whereas the flat

architecture/single step action perspective predicts that the status

of action selection in the second stage should be independent of

the first, we found that this was not true; habitual action selection

in the first stage predicted continued habitual selection in the

second stage as a sequence of actions, a finding predicted by a

hierarchical goal-directed/habit sequence account [8]. According

to this account, at the top of the hierarchy the goal-directed system

evaluates and selects goals and then habits efficiently implement

decisions made by the goal-directed system in the form of action

Figure 8. Effect of reward, and reaction times on second-stage choices. Partitioning the probability of staying on the same second stage
action (stay: staying on the same second stage action; switch: switching to the other second stage action) as a function of (i) reward on the previous
trial (node #1), (ii) whether the same first stage action is taken (stage 1 action; node #3), and (iii) reaction times (RT). ‘n’ represents the number of
data points; p-values are calculated using a permutation test.
doi:10.1371/journal.pcbi.1003364.g008
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sequences. In comparison to the other accounts, which posit a flat

interaction between these two systems, we found that the

hierarchical account provides more accurate predictions both in

terms of the choices of the subjects, and in terms of their reaction

times during action selection. When performing according to a

habitual sequence of actions, subjects tended to repeat both

previously reinforced sequences and to perform these sequences at

significantly lower reaction times than when their actions were

goal-directed.

Hierarchical decision-making and the two-stage task
A number of studies have previously investigated the relation-

ship between hierarchical RL and decision-making [7,19,38–43].

We extended these studies by showing how the formation of action

sequences can lead to decisions that are insensitive to (i) the values

of the outcomes [8] and (ii) the contingency between specific

actions and their outcomes (i.e. the key press–slot machine

associations in this study), the two defining characteristics of the

habitual behavior.

The other difference between the hierarchical RL model that

we used here and previous work is that we assumed that

performance of action sequences is insensitive to the feedback

received during execution [12,17], whereas, in general, previous

work based on hierarchical RL theory has assumed that action

selection is based on the state of the environment [44–46]. Within

this latter framework, one can posit that habits are hierarchically

organized actions but that their performance is sensitive to the

feedback received after execution of each individual action.

Although this class of models can explain habitual behavior

executed in the first stage of the current task, this approach

Table 1. Model comparison between hierarchical and flat families.

In Each Family In Total

Family Free Parameters -log(P(D|M)) p-r2
Number Favoring
Best Model

Exceedance
Probability

Exceedance
Probability

Number Favoring
Best Model

Exceedance
Probability

H b,g1,k1 4219.6 0.26 12 0.000 0.004 12 0.993

b,g1,k1,w 4092.7 0.29 13 0.000 0.003 13

b,g1,k1,k2 4189.3 0.27 12 0.001 0.005 12

b,g1,k1,g2 4127.9 0.29 11 0.003 0.013 11

b,g1,k1,w,k2 4074.9 0.30 11 0.002 0.011 11

b,g1,k1,w,g2 4078.0 0.30 10 0.004 0.011 10

b,g1,k1,k2,g2 4110.3 0.29 11 0.000 0.004 11

b,g1,k1,w,k2,g2 4058.7 0.30 - 0.986* 0.911** -

F b1,g,k,w 4212.0 0.27 14 0.004 0.002 14 0.006

b1,g,k,w,b2 4212.5 0.27 12 0.004 0.004 13

b1,g,k,w,l 4168.6 0.28 - 0.697* 0.006 12

b1,g,k,w,a1 4201.1 0.27 12 0.005 0.002 14

b1,g,k,w,b2,l 4173.1 0.28 9 0.032 0.006 11

b1,g,k,w,b2,a1 4198.4 0.27 11 0.007 0.003 13

b1,g,k,w,l,a1 4174.2 0.28 11 0.049 0.002 12

b1,g,k,w,b2,l,a1 4169.4 0.28 10 0.199 0.005 12

H: Hierarchical; F: Flat. Shown for each model: negative log model evidence 2log(P(D|M)); a pseudo-r statistic (p – r2) which is a normalized measure of the degree of
variance accounted for in comparison to a model with random choices; the number of subjects favoring the best fitting model based on the model evidence; The
exceedance probability which represents the probability that each model (or family) is most likely among alternatives over the population.
*best fitting model in each family.
**best fitting model.
doi:10.1371/journal.pcbi.1003364.t001

Table 2. Best fitting parameter estimates for each family across subjects.

Hierarchical Flat

Parameter First Quartile Median Third Quartile Parameter First Quartile Median Third Quartile

b 4.24 5.80 6.96 b1 1.64 2.33 3.44

g1 0.82 0.89 0.95 g 0.65 0.84 0.93

k1 1.25 1.66 2.25 k 0.84 0.94 1.40

w 0.25 0.46 0.62 w 0.40 0.59 0.68

k2 20.50 0.30 0.70 l 0.69 0.93 0.95

g2 0.14 0.29 0.77 - - - -

doi:10.1371/journal.pcbi.1003364.t002
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predicts that second stage actions will, ultimately, be similar to

those of the flat architecture discussed earlier, which is not

consistent with the data observed in this study.

In the hierarchical account advanced here we assumed, based

on the previous findings in rodents [18,47], that, similar to single

actions, action sequences are also under goal-directed control.

Alternatively, it is possible that the value of any action sequence is

learned in a model-free manner (for example using Q-learning)

without learning the identity of the particular outcome that it

predicts. Our results are silent with respect to this latter

assumption; nevertheless, whatever the case, the conclusion that

habitual responses in the first stage were due to the execution of an

action sequence still holds. One way to study this issue is to add

another choice to the end of the task, making it a three stage task,

and then asking whether performance of for example A1A2 action

sequence is goal-directed or habitual, which can be answered by

devaluation of outcome of A1A2, or using the same task structure

that we used here to distinguish habitual and goal-directed actions.

However, again, if it were found that the selection of the A1A2

sequence was not sensitive to environmental contingencies, or

outcome values, this could be due either to the formation of

A1A2A3 action sequence (since outcome of A1A2 falls within

sequence boundaries [8]), or it could be because action sequences

are open to model-free evaluation. Similar to the study here, these

accounts can be distinguished by examining whether the subject

selects A3 during habitual selection of A1A2 irrespective of the

outcome of A1A2 performance. If so, it can be concluded that the

observed habitual behavior is due to the formation of an action

sequence, not model-free RL. Along the same lines, it is possible to

assume that, in the current study, first stage habitual responses

were guided by a flat model operating in parallel to the

hierarchical model we propose here. Again, although the task

results are neutral with respect to this assumption, adding a

parallel model increases the model’s complexity, is not required to

account for the current data, and so it necessity should be

motivated by additional behavioral data.

It might also be argued that, although the current predictions

apply to the modified two-stage discrimination task used here, they

may not apply to previous versions of the task. In previous

versions, subjects at each stage chose between two symbols instead

of two fixed actions and the symbols moved from side to side at

each trial ensuring there was no consistent mapping between the

button presses and the symbols. There are two points to make

here: First, the fact that specific (e.g. left- or right-hand) actions are

degraded in their contingency with the outcome on this version of

the task raises the issue of stimulus control; either the stimuli

exclusively mediate the predictions of second stage outcomes or

the concept of action needs to be made more liberal to the

selection of a symbol. The former approach would, of course,

render the task Pavlovian, rather than instrumental, and the

applicability of model-based control problematic. Second, and

relatedly, in order to apply our hierarchical model to the earlier

task, we also need to extend the concept of an ‘action’ from

pressing a button (as in our task), to selecting a symbol; if this is

accepted then, using the logic laid out earlier, the hierarchical

goal-directed/habit sequences model can explain the results of the

task. In the prior version of the task, symbols in the second stage

were different from each other, for example in one of the second

stage states subject could choose between symbols ‘C’ and ‘D’, but

in the other second stage state, the choice was between symbols ‘E’

and ‘F’. As such, we cannot directly assess the probability of

staying on the same second stage action if the subjects end up in a

different second stage state. Nevertheless, the hierarchical theory

predicts that if the subject selects same first stage action, and ends

up with the same second stage state and selects the same second

stage action, then the reaction time will be faster than when they

end up with in a different second stage state.

Deviations from prediction and the interpretation of the
two-stage task

Predictions of both models (flat and hierarchical) were found to

deviate from the behavior of the subjects in two cases. In the first

case, if, after being rewarded, the subject switches to the other

action then both accounts predict that the probability of staying on

the second stage action should be on average 0.5 (Figure 5B,C).

However, in the actual data it is below 0.5 (Figure 5A). In the

second case, both accounts predict that the difference between stay

probability in common and rare transitions should be equal in

both the reward and no-reward conditions (Figure 4A, B),

however, as Figure 3C shows, the difference is larger in the

reward condition. It is possible to capture these two deviations by

adding more free parameters to the models; however, since the

deviations exist for both the flat and hierarchical families and so do

not affect the comparison between them, we didn’t add further

parameters to account for these two deviations.

As in previous work, we interpreted the interaction between

being rewarded and the type of transition in the previous trial (rare

or common) as the evidence for goal-directed behavior. It should,

however, be noted that, if there is a strong initial bias in total

possible reward for one action vs. the other at the first-stage, and

reward transitions are slow, then it is possible to observe an

interaction between reward and transition type without engaging a

goal-directed system. As a consequence of the higher overall

probability of reward for taking, say, action ‘A1’ in the first stage,

the subject can establish that action has a higher value (without

relying on the task structure) and so will take that action, i.e. ‘A1’,

more frequently than the other, i.e. action ‘A2’, which means that

the probability of staying on action ‘A1’ will be higher than action

‘A2’ in general. At the same time, because action ‘A1’ is better

than the other action, most of the rewarded common transitions

and unrewarded rare transitions result from taking action ‘A1’.

Likewise, most of the unrewarded common transitions and

rewarded rare transitions will be the result of taking action ‘A2’.

This fact, and the fact that stay probability on action ‘A1’ is

generally higher, will produce a reward-transition interaction,

without having a goal-directed system, at least in the period that

action ‘A1’ is better than the other action. This bias is proportional

to how fast the bias in first stage values changes and cannot

account for the current data. It should also be noted that, as the

comparison between the flat and hierarchical model families was

based on model fit, those results don’t suffer from this problem.

Inhibitory interactions between goal-directed and
habitual control

Although, on the hierarchical goal-directed/habit sequence

model advanced here, habits are integrated with the goal-directed

process to reach the goals selected by this latter system,

competition can also occur between these two systems when the

further execution of an ongoing habit sequence is found to be

inappropriate by the goal-directed system and it attempts to take

back control. This type of competition resembles the situation in

an inhibitory control task, such as the stop-signal task, in which

subjects must respond quickly when a ‘go’ signal appears but must

stop the action if a stop-signal appears [48]. In the context of our

task, seeing a slot machine in the second-stage is the ‘go’ signal,

which causes the execution of the next action in the sequence. The

stop signal comes from the goal-directed system when the pending
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response is identified as inappropriate. Consistent with this

conception in conditions in which sequence performance is

inhibited, reaction times are slower. In the stop-signal task,

subjects are typically able to inhibit their responses when the stop

signal is temporally close to the ‘go’ signal. Although the stop

signal task is more global in terms of response inhibition, whereas

in the current task the inhibition is specific to one as opposed to an

alternative action, this implies that the ability of the goal-directed

system to override habits depends on how fast it calculates the

correct action: the faster it calculates, the higher the chance of

taking control back before action execution.

Habit sequences vs. stimulus-response habits
It is also interesting to consider the relationship between habit

sequences and stimulus-response (S-R) theories of habit learn-

ing. The S-R theory of habit learning maintains that habits are

responses that are elicited by antecedent stimuli rather than

their consequences [49,50]. Such S-R theories maintain that

stimuli trigger their associated behavioral responses due to an

association between the stimulus and the response. According to

the habit sequence theory, however, the stimulus instead signals

that the next action in the sequence should be executed; i.e., in

the context of our task, seeing a slot machine signals that it is

time for the next action to be executed. Although the next

action to be executed is determined by the sequence, the

response is still stimulus-bound to some extent and is elicited

only when the next expected stimulus is encountered. Never-

theless, these two theories provide different predictions. For

example, S-R theory predicts that, in the presence of the

appropriate stimulus the response will be performed, irrespec-

tive of whether that stimulus was encountered as part of the

habit sequence or not. In contrast, habit sequence theory

predicts that the individual will respond to the stimulus only

when the appropriate habit sequence has already been launched

by the goal-directed system.

Action sequence formation, error signals and dopamine
In the two-stage task that we used in this study, there are few

possible action sequences, and so it is easy for the subject to

enumerate all of them during decision making. However, in

general, the number of action sequences grows exponentially

with number of individual actions, and, as such, it will rapidly

become impractical to consider all of them at the choice point.

As a consequence, the decision-maker needs to discover

‘useful’ action sequences, and to limit consideration to those

for action selection rather than all the possible action

sequences. In the context of the hierarchical RL literature,

this problem is known as ‘option discovery’ and various

methods has been proposed to address it (see [19] for a review).

In particular, we have previously shown how action sequences

can be formed using a reward prediction error signal [8],

which has the benefit of forging a bridge between habit

sequence formation, and reward prediction error which has

been shown to be coded by the phasic activity of dopamine

neurons in midbrain [51,52].

The flat architecture also utilizes reward prediction error, but

for the learning of S-R associations instead of action sequences

[5]. Here one critical difference lies in the fact that the

hierarchical architecture maintains that the reward prediction

error is not computed at the second stage when actions are

executed habitually in contrast to the flat architecture according

to which reward prediction errors are computed in all

conditions.

Materials and Methods

Participants and behavioral task
Fifteen English speaking subjects (seven females; eight males;

mean age 23.8 years [SD 4.3]) completed a two-stage decision-

making task. After a description of the study, written consent was

obtained. This study was approved by the Sydney University

Ethics Committee.

Each subject completed 270 trials, with a break after the first

120 trials (Figure 2). Each trial started with the presentation of a

black square and subjects could choose between pressing either ‘Z’

(using left hand) or ‘/’ (using right hand). After pressing the key, a

slot machine appeared on the screen, and the subject could make

the next response, which would result in either a monetary reward

or no reward. The outcome was shown for two seconds and after

that an inter trial interval started and lasted for one second, after

which the next trial began.

The probability of earning money at each choice was randomly

set to either 0.2 or 0.7 at the beginning of the session, and in each

trial, with the chance of 1/7, they were again randomly set to 0.2

or 0.7. This later step was to encourage searching for the best keys

throughout the session.

Subjects were instructed that the chance of reaching each slot

machine by pressing each key will not change throughout the task,

but the goodness of the keys in terms of leading to rewards will

change over time.

If a first stage action is the best action (the maximum probability

of receiving reward on the keys of the slot machine that it

commonly leads to is greater than the other action), and slot

machines reset in the next trial, the probability that the action

remains the best action is 3/16. Based on this, and given that

probability of resetting is 1/7, the average number of trials for

which a first stage action remains the best action is as follows:
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The fact that a first stage action remains the best for a few

numbers of trials ensures that reward-transition interaction does

not emerge as the result of developing bias toward the best action.

Behavioral analysis
For all the analyses, we used R [53], and the R package lme4

[54].

In the analysis presented in the section headed ‘Goal-directed

and habitual performance on the two-stage task’, we used mixed-

effects logistic regression in which whether the previous first stage

action is repeated was a dependent variable, and the transition

type (rare or common), and reward received in the previous trial

were explanatory variables. We treated all the explanatory

variables as random effects.

In the analysis in the section headed ‘The interaction of goal-

directed actions and habit sequences in stage 2 performance’,

staying or switching to the other second stage action is the

dependent variable, and the reward received in the previous trial

and staying on the first stage action were the explanatory variables.

Only trials in which the second stage states were different from

previous trials were included in this analysis. All the explanatory

variables were used as random effects. In the second analysis of

this section, staying on the same second stage action is dependent

variable, and whether second stage state is the same, and whether

previous trial was rewarded, are explanatory variables, and also

random effects. Only trials in which first stage action is the same as
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the previous trail were included in this analysis. The third analysis

is similar to the third one, except that trials in which first stage

action is not the same as the previous trial are included in the

analysis.

For analysis of the model behavior in the section headed ‘The

interaction of goal-directed actions and habit sequences in stage 2

performance’, each model was simulated 3000 trials in the task

with the best fitting parameters of each individual (see the section

headed ‘Computational Modeling’ below for more information).

Then we analyzed data using linear mixed-effects regression in

which the probability of selecting the same second stage action by

the model was taken as the dependent variable, and the reward

received in the previous trial and staying on the first stage actions

were explanatory variables. The intercept was treated as the

random effect, and reported p-values are MCMC-estimated using

R package LanguageR [55].

In the analysis in the first part of the section headed ‘Reaction

times during habit execution’, staying on the same second stage

action was a dependent variable, and the reaction time was an

explanatory and random effect. Only trials in which the previous

trial was rewarded (first analysis) or not rewarded (second analysis),

the first stage action was repeated, and the second stage state was

not the same, were included in this analysis.

In the second analysis of this section, we applied a recursive

partitioning method by taking (i) whether the previous trial is

rewarded, (ii) whether the same first stage action is being taken,

and (iii) reaction time as covariates, and staying on the same

second stage action as response. We used R package ‘party’ [56] for

the analysis which employs conditional inference trees for

recursive partitioning. In short, the partitioning method works as

follows: at each stage of partitioning the algorithm performs a

significance test on independence between any of covariates and

the response using permutation tests. If the hypothesis is rejected

(in the current analysis p-value less than 0.05), it selects the

covariate which has strongest association with the response, and

performs a split on that covariate.

Computational modeling
Simulation environment. We assumed that the environ-

ment has five states; the initial state denoted by S0, (the black

screen in Figure 1), slot machine states denoted by S1 and S2, the

reward state denoted by SRe and no-reward state denoted by SNR.

Model-based, model-free RL hybrid. For modeling the flat

interaction, a family of hybrid models similar to the previous works

was used [23,28–30]. A model-based RL [57] model was used for

modeling goal-directed behavior; and a Q-learning model [58]

was used to model the habitual behavior. We assumed that actions

A1 and A2 are available in states S0, S1 and S2.

Model-based RL- we denote the transition function with T(s,a,s’)
which is the probability of reaching state s’ after executing action a
in state s. We assume that the transition function at the first stage is

fixed (T(S0,A1,S1)~0:7 and T(S0,A2,S2)~0:7) and it will not

change during learning. For other states, after executing action a
in state s and reaching state s’, the transition function updates as

follows:

Vs’’[fSRe,SNRg :

T(s’’Ds,a)/
(1{g)T(s’’Ds,a)zg s’~s’’

(1{g)T(s’’Ds,a) s’=s’’

(
ð2Þ

Where g(0vgv1) is the update rate of the state-action-state

transitions.

We assumed that the reward at state SRe is one (R(SRe)~1),

and zero in all other states. Based on this, the goal-directed value

of taking action a in state s is as follows:

Vs [ fS0,S1,S2g : VG(s,a)~
X

s’

T(s’Ds,a)VG(s’) ð3Þ

Where:

VG(s)~
max

a
VG(s,a) s [ fS0,S1,S2g

R(s) s [ fSRe,SNRg

(
ð4Þ

Model-free RL- After taking action a in state s, and reaching state

s0, model-free values update as follows:

QH (s,a)/QH (s,a)za(VH (s’){QH (s,a)) ð5Þ

Where a(0vav1) is the learning rate, which can be different in

the first stage and second stage actions. For the first stage actions

(actions executed in S0), a~a1, and for the second stage actions

a~a2. Also

VH (s)~
max

a
QH (s,a) s [ fS0,S1,S2g

R(s) s [ fSRe,SNRg

(
ð6Þ

In the trials in which the best action is executed in s [ fS1,S2g the

habitual value of the action executed in state S0 also updates

according to the outcome. If a was to be the action which was

taken in S0, a’ the action taken in s, and s’ the state visited after

executing a’, values update as follows:

QH (S0,a)/QH (S0,a)za1l(VH (s’){QH (s,a0)) ð7Þ

Where l(0vlv1) is the reinforcement eligibility parameter, and

determines how the first stage action values are affected by

receiving the outcome after executing the second stage actions.

Final values are then computed by combining the values

provided by the habitual and goal-directed processes:

V (s,a)~wV G(s,a)z(1{w)QH (s,a) ð8Þ

Were w(0vwv1) determines the relative contribution of habitual

and goal-directed values into the final values.

Finally, the probability of selecting action a in state s will be

determined according to the soft-max rule:

p(aDs)~
eb(s)V (s,a)zk(s,a)P

a’
eb(s)V(s,a’)zk(s,a’) ð9Þ

Where k(s,a) is the action preservation parameter and captures

the general tendency of taking the same action as the previous trial

[25,27]. Assuming s~S0 and a being the action taken in the

previous trial in the S0 state, then k(s,a)~k, otherwise it will be

zero. The b(s) parameter controls the rate of exploration, and

b(s)~b1 if s~S0 and b(s)~b2 if s [ fS1,S2g.
In the most general form, all the free parameters are included in

the model: b1,b2,g,a1,l,k,w (we assumed that a2~g). We

generated eight simpler models by setting l~0, a1~a2, and

b2~b1.
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Hierarchical model-based, sequence-based RL. Implemen-

tation of the hierarchical structure is similar to hierarchical RL [44–

46], with action sequences (A1A1, A1A2, etc) as options [46]. We

assumed in state S0, actions A1, A2, A1A1, A1A2, A2A1, and A2A2

are available. In states S1 and S2, actions A1 and A2 are available.

After reaching a terminal state (SRe or SNR), transition functions of

both the action sequence, and the single action that led to that state

update according to equation (2). In the case of single actions, the

transition function will be updated by the g~g1 update rate, and in

the case of action sequences, the transition function will be updated by

the g~g2 update rate. Based on the learned transition function, value

of action a in state s is calculated by the goal-directed system using

equation (3).

The probability of selecting each action will be as follows:

p(aDs)~
ebv(a)VG (s,a)zk(s,a)P

a’
ebv(a)VG (s,a’)zk(s,a’)

ð10Þ

Where v(a) determines the relative preference for single actions

instead of executing action sequences. If action a is a single action

v(a)~w, and if action a is an action sequence, v(a)~1{w. As

before, k(s,a) captures action perseveration. We assumed that

k(s,a)~k1 if action a is a single action, and k(s,a)~k2 if action a

is an action sequence. VG(s,a) is calculated using equation (3).

For calculating the probability of selecting actions in the second

stage, given the first choice of the subject, we need to know

whether that action is a part of an action sequence selected earlier,

or is it under goal-directed control. Assume we know action A1 has

been executed in state S0 by the subject, the probability of this

action being due to performing the A1A2 action sequence is:

P(A1A2DS0,A1)~
p(A1A2DS0)

p(A1DS0)zp(A1A2DS0)zp(A1A1DS0)
ð11Þ

Similarly, the probability of observing A1 due to selecting the

single action A1 is:

P(A1DS0,A1)~
p(A1DS0)

p(A1DS0)zp(A1A2DS0)zp(A1A1DS0)
ð12Þ

Based on this, the probability that the model assigns to action a in

state s [ fS1,S2g, given that action a’ is being observed in S0 is:

P(aDs)~P(aDS0,a’)p(aDS)zP(a’aDS0,a’) ð13Þ

Where P(aDS0,a’) and P(a’aDS0,a’) are calculated using equations

(11) and (12) respectively. In the most general form, all the free

parameters are included in the model: b, g1, g2, k1, k2, w. We

generated eight simpler models by setting g2~g1, v(a)~1, and

k2~k1.

In the analyses in the section headed ‘Reaction times during

habit execution’, we assumed that reaction times in the second

stage are inversely related to the probability of executing an action

sequence in the first stage. As such, if subject has taken action A1

in the first stage, and action A2 in the second stage, then model

prediction of the reaction time of A2 will be:

RT{1~
p(A1A2DS0)

p(A1DS0)zp(A1A2DS0)
ð14Þ

For the second analysis in the section headed ‘Behavioral

Modeling: Bayesian model selection’, we aimed to remove the

effect of action sequences in the second stage choices. We used

eight models same as above, but the probability that the model

assigns to action a in state s [ fS1,S2g, was defined as:

P(aDs)~p(aDs) ð15Þ

Which indicates probability of taking each action in each slot

machine is guided only by the rewards earned on that slot

machine, and not by the action sequences in the first stage.

Model selection. Since the two families of models that we

are comparing are not nested in each other, we can’t use classical

model selection. Instead, we use a Bayesian model selection for

comparing these two families of models [31]. We first calculated

the model evidence for each model using the Laplace approxi-

mation [59,60], and then calculated the exceedance probability

favoring each family, (taking model identity as a random effect)

using the ‘spm_compare_families’ routine in the spm8 software.

Within each family, exceedance probabilities were calculated using

the ‘spm_BMS’ routine [32].

The Laplace approximation requires a prior assumption of

probability distributions over the free parameters of models.

Similar to the previous study [23], for parameters between zero

and one (learning rates, reinforcement eligibility, weight param-

eter), we assumed a Beta(1.1, 1.1) distribution; for exploration-

exploitation parameters we assumed a Gamma(1.2, 5) distribution,

and for perseveration parameters, a Normal(0, 1) distribution was

assumed. The Laplace approximation includes finding the

maximum a posteriori (MAP) parameter estimates. For this

purpose, we used the IPOPT software package [61] for nonlinear

optimization, and the DerApproximator package [62] in order to

estimate the Hessian at the MAP point.
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