Disentangled behavioral representations
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Introduction

Model

* Individual characteristics in human decision-making are often quantified by fitting a parametric cognitive
model to subjects’ behavior and then studying differences between them in the associated parameter space. However,
these models often fit behavior more poorl than recurrent neural networks (RNNs), which are more flexible and make

fewer assumptions about the underlying decision-making processes. |ﬂput Sequeﬂces < EﬂCOder < DeCOder > Leamiﬂg ﬂe’[WOFk Z?WX]_ — enC(aj?T7 T{LT, @enc)a 1) — 1 L. N’

* The parameter and latent activity spaces of RNINs are generally high-dimensional and uninterpretable,
making it hard to use them to study individual differences.

Latent space

<
* We show how to benefit from the flexibility of RNNs while representing individual differences in 2
a low-dimensional and interpretable space. To achieve this, we propose a novel end-to-end learning 4. .
framework in which an encoder is trained to map the behavior of subjects into a low-dimensional latent space. These low- ®| ¢
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dimensional representations are used to generate the parameters of individual RNNs corresponding to the decision- =) RN N o |o® —}7Tt ( )
making process of each subject. °l1 ° :
* We introduce terms into the loss function that ensure that the latent dimensions are informative and disentangled, i.e.
encouraged to have distinct effects on behavior. This allows them to align with separate facets of individual differences. Y
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* We illustrate the performance of our framework on synthetic data as well as a dataset including the behavior of patients
with psychiatric disorders.

Training losses

The training loss function has three components:
(i) a reconstruction loss which penalizes discrepancies between the predicted and actual input sequence,

(i) a group-level disentanglement loss which encourages sequences to spread independently across the dimensions of the a)
Input sequence,
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(iii) a separation loss which favors dimensions of the latent space that have disentangled effects on the behavior generated
by the learning networks.
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