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Introduction
• Understanding the decision-making system in the brain is important since it is the substrate for human 

and animal choice abilities, and has close associations with psychiatric and neurological disease.

• The main challenge: Decisions and their related brain activities are dependent on the history of 
previous experiences. That is, decisions and thus the neural activity that causes them are not only affected by the 
immediate events in the task, but are also affected by a potentially long history of previous inputs, such as rewards, actions 
and environmental cues.

• Previous approach: Model-based analysis of fMRI data, which involves training a computational model using 
behavioral data, and then searching the brain for regions whose BOLD activity is related to the internal signals and 
variables of the model.

• Problem: Even if the model produces actions similar to the subjects, the variables and summary statistics that 
the brain explicitly tracks might not transparently represent the ones the hypothetical model represents. In this 
case, either the relevant signals in the brain will be missed in the analysis, or the model will have to be altered 
(manually) in the hope that the new signals in the model resemble neural activity in the brain.

• We propose a new approach using a recurrent neural network as a type of model that is sufficiently 
flexible to represent the potentially complex neural computations in the brain, while also closely matching subjects’ 
choice behavior.

• We show how to interpret the model by unrolling it over space and time to determine the role of each brain 
region at each time slice in the path from reward processing to action selection.
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• Each subject made ~300 choices.

Model

Interpreting the model

• We have introduced a new architecture for investigating the neural substrates of decision-making in 
the brain.

• Our approach does not require manual engineering and is able to learn computational processes 
directly from the data. We further showed that the model can be interpreted to uncover the temporal 
engagement of different brain regions in choice and reward processing. 

• Besides being used as a standalone analysis tool, this approach can inform model-based fMRI analyses 
to investigate whether the model correctly tracks the brain’s internal mechanisms. That is, if a brain 
region is found to be important in the current analysis, but not using the model-based fMRI analysis, 
this could mean that the model used to extract neural information is not representing all of the 
relevant neural signals involved in decision-making and requires further modification.

Conclusion

model settings
• All the methods were implemented in Tensorflow and gradients (for both optimization and interpretation of the model) were calculated using automatic differentiation methods available in this package. 

RMSProp was used for optimization.

• The time of behavioral data was discretized with resolution dt = 0.6625.

To look for neural correlates of action values we had to estimate
the value of taking each action in every trial. We calculated the
action values using a computational reinforcement-learning (RL)
model in which the value of each action, Veye and Vhand, was
updated in proportion to a prediction error on each trial (see Table
S1 for a summary of how the different types of value signals relate
to the components of the experiment). The model also assumed
that action selection in every trial followed a soft-max probability
rule based on the difference of the estimated action values (8). To
test for the presence of action value signals in the brain we took the
model predicted trial-by-trial estimates of the two action values and
entered these into a regression analysis against the fMRI data. In
addition to a whole brain screening for the presence of action-value
signals, we specifically looked for them in areas known to be
involved in the planning of motor actions, including supplementary
motor cortex (18–21) and lateral parietal cortex (22, 23). Given that
both of these areas have previously been shown to contain value-
related signals for movements in nonhuman primates, and that they
are closely interconnected with the area of motor cortex involved
in carrying out motor actions (24–26), we considered these areas
prime candidates for containing action-value representations that
could then be used to guide action-based choices. It is important to
emphasize, however, that the tasks used in previous studies did not
make it possible to determine if the value signals identified were
chosen values or action values.

We also looked for areas that are involved in comparing the
action values to make a choice. Two areas of a priori interest were
the anterior cingulate cortex (ACC) and the dorsal striatum. ACC
has been previously implicated in action-based choice, both in the
context of a human imaging study reporting activity in this area
during a task involving choices between different actions compared
to a situation involving responses guided by instruction (27), and in
a monkey lesion study where ACC lesions produced an impairment
in action-outcome based choice but not in mediating changes in
responses following errors (28). Dorsal striatum has been impli-
cated in both goal-directed and habitual instrumental responding
for reward in rodents (29, 30). Moreover, human fMRI studies
reveal increased activity in both of these regions when subjects

make choices to obtain reward compared to an otherwise analogous
situation in which the rewards are obtained without the need to
make a choice (31–34).

The most simple type of comparison process would be to
compute a difference between the two action values. We tested for
such a difference, but as we had no a priori hypothesis about the
directionality of the computation, we tested for both the difference
between the value of the action chosen and the value of action not
chosen (Vchosen ! Vunchosen), and one involving the opposite
difference (Vunchosen ! Vchosen). As we found evidence for such an
action-value comparison signal in the brain, we then proposed a
simple computational model to provide a conceptual explanation as
to how such a signal could reflect the output of a computationally
plausible decision mechanism.

Results
RL Model Fits to Behavioral Choice Data. A comparison of the choice
probabilities predicted by the RL model and the soft-max proce-
dure to subjects’ actual behavior suggests that the model matches
subjects behavior well. Fig. 1C compares both variables for a typical
subject. Fig. 1D compares the predicted choice probability (binned)
against the actual choice probabilities for the group. A similar linear
regression analysis at the individual level generated an average R2

across subjects of 0.83 and regression coefficients that were signif-
icant at P " 0.001 in each subject.

Action Values. We found neural activity correlating with the action
values for making a hand movement in left supplementary motor
area (SMA; Fig. 2A and Table S2). A region of interest (ROI)
analysis showed that activity in this area satisfied the properties of
a hand action value: it was sensitive to the value of hand movements,
and it showed no response selectivity to the value of eye movements
(Fig. 2B). Activity in lateral parietal cortex, ACC, and right dorsal
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Fig. 1. Experimental Design and Behavior. (A) Subjects were presented with a
choice cue after which they had to respond within 2.5 s by performing a saccade
to the red target circle or a right handed button press. Once a response was
registered the screen was immediately cleared for a short delay and subsequently
theoutcomewasrevealed(6safter trialonset) indicatingeither receiptof reward
or no reward. Inter-trial-intervals varied between 1 and 8 s. (B) Example reward
probabilities for saccades and button presses as a function of the trial number.
The probability of being rewarded following choice of either the hand or eye
movement was varied across the experiment independently for each movement.
(C) Fitted model choice probability (red) and actual choice behavior (blue) shown
for a single subject. (D) Actual choice behavior versus model predicted choice
probability. Data are pooled across subjects, the regression slope is shown as a
line, vertical bars, SEM.
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Fig. 2. Action values. (A) Region of supplementary motor area showing cor-
relations with action values for hand movement (Vh/green) and a region of
pre-SEF showing correlations with action-values for eye movements (Ve/red).
T-maps are shown from a whole brain analysis thresholded at P " 0.001 uncor-
rected (see Fig. S1 for a version with color bars relating to t stats). (B) Average
effect sizes of Ve (red) and Vh (green) extracted from SEF and SMA. The effects
shownherewerecalculatedfromtrials independentof thoseusedtofunctionally
identify the ROI. Note that only Ve but not Vh modulate the signal in preSEF, and
that activity in SMA shows the opposite pattern. Vertical lines, SEM.
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Figure 2: The task. Each trial started with the presentation of a screen (the left most square in the
figure) and the subjects had 2.5 seconds to make an eye saccade to the red target circle or press
a button with their right hand. After a delay (3.5 second) during which the screen showed only a
fixation point, subjects received the outcome of their choice which indicated whether their choice was
rewarded. The next trial started after an inter-trial interval (ITI) that varied between 1 and 8 seconds.
Figure reprinted with permission from Wunderlich et al. [2009]. Copyright (2009) National Academy
of Sciences.

4.1 Task and subjects

The data used here were previously published in Wunderlich et al. [2009]. The structure of the
decision-making task is shown in Figure 2. In each trial subjects had a choice between making
a saccade (EYE) or pressing a button (HAND). Choices were rewarded with varying probabilities
across the experiment. There were four trial types in the task: (i) free-choice trials (150 trials), in
which subjects could choose between EYE and HAND; (ii) forced-choice trials in which subjects
were instructed to choose EYE (50 trials) or (iii) HAND (50 trials); (iv) null trials in which no
reward was received irrespective of the action selected (50 trials). Forced-choices and null trails
were randomly inserted between the free-choice trials. The environment consisted of two actions
(EYE and HAND) and five states corresponding to the four trial types and one state when the choice
outcomes were shown (reward or no-reward). Actions and states are assumed to be coded using
one-hot representations. Since time was discretized (see below), there were time points at which no
action was taken or no visual stimulus was shown, in which case states and actions were coded using
zero vectors.

The total number of subjects was NSUBJ = 22, and in total NACQ = 1136 images were acquired by
the scanner each containing NVOX = 63191 voxels. Therefore, the fMRI data can be summarized as
a tensor of size 22 ⇥ 1136 ⇥ 63191. Each subject made ⇠ 300 choices. See Supplementary Material
for the details of fMRI preprocessing and model settings.

4.2 Model settings

All the methods were implemented in Tensorflow [Abadi et al., 2016] and gradients (for both
optimization and interpretation of the model) were calculated using automatic differentiation methods
available in this package. See Supplementary Material for the model settings.

4.3 From reward to action

Figure 3(a,b) shows two sets of off-policy simulations. In each simulation there are four choice states,
the times of which are shown by the vertical gray patches in the top panels. The red patch following
each grey ribbon shows the time at which the outcome was revealed following the choice. The first
choice was rewarded (shown by ‘R’ in the graph), but the rest were not. In panel (a) action HAND
was selected in all choice states whereas in panel (b) it was action EYE. Based on this, since in
panel (a) the reward was earned when HAND was selected, we expected that choice to decrease the
probability of selecting action EYE on the next choice. This is shown by the blue bars which illustrate
the gradient of the probability of selecting the EYE action at each subsequent choice with respect to
the amount of reward earned after the first choice (d⇡r). For panel (b), since the reward was earned
as a consequence of choosing EYE in the first choice, we expected the reward to have a positive effect
on the probability of selecting EYE on the next trials, which is consistent with the graph.

Next we asked about the intermediation of each brain region between the reward earned after the first
choice (t1) and the next choice (t2), shown by the red arrow in Figure 3(a). To answer this question,
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To look for neural correlates of action values we had to estimate
the value of taking each action in every trial. We calculated the
action values using a computational reinforcement-learning (RL)
model in which the value of each action, Veye and Vhand, was
updated in proportion to a prediction error on each trial (see Table
S1 for a summary of how the different types of value signals relate
to the components of the experiment). The model also assumed
that action selection in every trial followed a soft-max probability
rule based on the difference of the estimated action values (8). To
test for the presence of action value signals in the brain we took the
model predicted trial-by-trial estimates of the two action values and
entered these into a regression analysis against the fMRI data. In
addition to a whole brain screening for the presence of action-value
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involved in the planning of motor actions, including supplementary
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both of these areas have previously been shown to contain value-
related signals for movements in nonhuman primates, and that they
are closely interconnected with the area of motor cortex involved
in carrying out motor actions (24–26), we considered these areas
prime candidates for containing action-value representations that
could then be used to guide action-based choices. It is important to
emphasize, however, that the tasks used in previous studies did not
make it possible to determine if the value signals identified were
chosen values or action values.

We also looked for areas that are involved in comparing the
action values to make a choice. Two areas of a priori interest were
the anterior cingulate cortex (ACC) and the dorsal striatum. ACC
has been previously implicated in action-based choice, both in the
context of a human imaging study reporting activity in this area
during a task involving choices between different actions compared
to a situation involving responses guided by instruction (27), and in
a monkey lesion study where ACC lesions produced an impairment
in action-outcome based choice but not in mediating changes in
responses following errors (28). Dorsal striatum has been impli-
cated in both goal-directed and habitual instrumental responding
for reward in rodents (29, 30). Moreover, human fMRI studies
reveal increased activity in both of these regions when subjects

make choices to obtain reward compared to an otherwise analogous
situation in which the rewards are obtained without the need to
make a choice (31–34).

The most simple type of comparison process would be to
compute a difference between the two action values. We tested for
such a difference, but as we had no a priori hypothesis about the
directionality of the computation, we tested for both the difference
between the value of the action chosen and the value of action not
chosen (Vchosen ! Vunchosen), and one involving the opposite
difference (Vunchosen ! Vchosen). As we found evidence for such an
action-value comparison signal in the brain, we then proposed a
simple computational model to provide a conceptual explanation as
to how such a signal could reflect the output of a computationally
plausible decision mechanism.

Results
RL Model Fits to Behavioral Choice Data. A comparison of the choice
probabilities predicted by the RL model and the soft-max proce-
dure to subjects’ actual behavior suggests that the model matches
subjects behavior well. Fig. 1C compares both variables for a typical
subject. Fig. 1D compares the predicted choice probability (binned)
against the actual choice probabilities for the group. A similar linear
regression analysis at the individual level generated an average R2

across subjects of 0.83 and regression coefficients that were signif-
icant at P " 0.001 in each subject.

Action Values. We found neural activity correlating with the action
values for making a hand movement in left supplementary motor
area (SMA; Fig. 2A and Table S2). A region of interest (ROI)
analysis showed that activity in this area satisfied the properties of
a hand action value: it was sensitive to the value of hand movements,
and it showed no response selectivity to the value of eye movements
(Fig. 2B). Activity in lateral parietal cortex, ACC, and right dorsal
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Fig. 1. Experimental Design and Behavior. (A) Subjects were presented with a
choice cue after which they had to respond within 2.5 s by performing a saccade
to the red target circle or a right handed button press. Once a response was
registered the screen was immediately cleared for a short delay and subsequently
theoutcomewasrevealed(6safter trialonset) indicatingeither receiptof reward
or no reward. Inter-trial-intervals varied between 1 and 8 s. (B) Example reward
probabilities for saccades and button presses as a function of the trial number.
The probability of being rewarded following choice of either the hand or eye
movement was varied across the experiment independently for each movement.
(C) Fitted model choice probability (red) and actual choice behavior (blue) shown
for a single subject. (D) Actual choice behavior versus model predicted choice
probability. Data are pooled across subjects, the regression slope is shown as a
line, vertical bars, SEM.
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Fig. 2. Action values. (A) Region of supplementary motor area showing cor-
relations with action values for hand movement (Vh/green) and a region of
pre-SEF showing correlations with action-values for eye movements (Ve/red).
T-maps are shown from a whole brain analysis thresholded at P " 0.001 uncor-
rected (see Fig. S1 for a version with color bars relating to t stats). (B) Average
effect sizes of Ve (red) and Vh (green) extracted from SEF and SMA. The effects
shownherewerecalculatedfromtrials independentof thoseusedtofunctionally
identify the ROI. Note that only Ve but not Vh modulate the signal in preSEF, and
that activity in SMA shows the opposite pattern. Vertical lines, SEM.
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Figure 2: The task. Each trial started with the presentation of a screen (the left most square in the
figure) and the subjects had 2.5 seconds to make an eye saccade to the red target circle or press
a button with their right hand. After a delay (3.5 second) during which the screen showed only a
fixation point, subjects received the outcome of their choice which indicated whether their choice was
rewarded. The next trial started after an inter-trial interval (ITI) that varied between 1 and 8 seconds.
Figure reprinted with permission from Wunderlich et al. [2009]. Copyright (2009) National Academy
of Sciences.

4.1 Task and subjects

The data used here were previously published in Wunderlich et al. [2009]. The structure of the
decision-making task is shown in Figure 2. In each trial subjects had a choice between making
a saccade (EYE) or pressing a button (HAND). Choices were rewarded with varying probabilities
across the experiment. There were four trial types in the task: (i) free-choice trials (150 trials), in
which subjects could choose between EYE and HAND; (ii) forced-choice trials in which subjects
were instructed to choose EYE (50 trials) or (iii) HAND (50 trials); (iv) null trials in which no
reward was received irrespective of the action selected (50 trials). Forced-choices and null trails
were randomly inserted between the free-choice trials. The environment consisted of two actions
(EYE and HAND) and five states corresponding to the four trial types and one state when the choice
outcomes were shown (reward or no-reward). Actions and states are assumed to be coded using
one-hot representations. Since time was discretized (see below), there were time points at which no
action was taken or no visual stimulus was shown, in which case states and actions were coded using
zero vectors.

The total number of subjects was NSUBJ = 22, and in total NACQ = 1136 images were acquired by
the scanner each containing NVOX = 63191 voxels. Therefore, the fMRI data can be summarized as
a tensor of size 22 ⇥ 1136 ⇥ 63191. Each subject made ⇠ 300 choices. See Supplementary Material
for the details of fMRI preprocessing and model settings.

4.2 Model settings

All the methods were implemented in Tensorflow [Abadi et al., 2016] and gradients (for both
optimization and interpretation of the model) were calculated using automatic differentiation methods
available in this package. See Supplementary Material for the model settings.

4.3 From reward to action

Figure 3(a,b) shows two sets of off-policy simulations. In each simulation there are four choice states,
the times of which are shown by the vertical gray patches in the top panels. The red patch following
each grey ribbon shows the time at which the outcome was revealed following the choice. The first
choice was rewarded (shown by ‘R’ in the graph), but the rest were not. In panel (a) action HAND
was selected in all choice states whereas in panel (b) it was action EYE. Based on this, since in
panel (a) the reward was earned when HAND was selected, we expected that choice to decrease the
probability of selecting action EYE on the next choice. This is shown by the blue bars which illustrate
the gradient of the probability of selecting the EYE action at each subsequent choice with respect to
the amount of reward earned after the first choice (d⇡r). For panel (b), since the reward was earned
as a consequence of choosing EYE in the first choice, we expected the reward to have a positive effect
on the probability of selecting EYE on the next trials, which is consistent with the graph.

Next we asked about the intermediation of each brain region between the reward earned after the first
choice (t1) and the next choice (t2), shown by the red arrow in Figure 3(a). To answer this question,
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the value of taking each action in every trial. We calculated the
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S1 for a summary of how the different types of value signals relate
to the components of the experiment). The model also assumed
that action selection in every trial followed a soft-max probability
rule based on the difference of the estimated action values (8). To
test for the presence of action value signals in the brain we took the
model predicted trial-by-trial estimates of the two action values and
entered these into a regression analysis against the fMRI data. In
addition to a whole brain screening for the presence of action-value
signals, we specifically looked for them in areas known to be
involved in the planning of motor actions, including supplementary
motor cortex (18–21) and lateral parietal cortex (22, 23). Given that
both of these areas have previously been shown to contain value-
related signals for movements in nonhuman primates, and that they
are closely interconnected with the area of motor cortex involved
in carrying out motor actions (24–26), we considered these areas
prime candidates for containing action-value representations that
could then be used to guide action-based choices. It is important to
emphasize, however, that the tasks used in previous studies did not
make it possible to determine if the value signals identified were
chosen values or action values.

We also looked for areas that are involved in comparing the
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the anterior cingulate cortex (ACC) and the dorsal striatum. ACC
has been previously implicated in action-based choice, both in the
context of a human imaging study reporting activity in this area
during a task involving choices between different actions compared
to a situation involving responses guided by instruction (27), and in
a monkey lesion study where ACC lesions produced an impairment
in action-outcome based choice but not in mediating changes in
responses following errors (28). Dorsal striatum has been impli-
cated in both goal-directed and habitual instrumental responding
for reward in rodents (29, 30). Moreover, human fMRI studies
reveal increased activity in both of these regions when subjects

make choices to obtain reward compared to an otherwise analogous
situation in which the rewards are obtained without the need to
make a choice (31–34).

The most simple type of comparison process would be to
compute a difference between the two action values. We tested for
such a difference, but as we had no a priori hypothesis about the
directionality of the computation, we tested for both the difference
between the value of the action chosen and the value of action not
chosen (Vchosen ! Vunchosen), and one involving the opposite
difference (Vunchosen ! Vchosen). As we found evidence for such an
action-value comparison signal in the brain, we then proposed a
simple computational model to provide a conceptual explanation as
to how such a signal could reflect the output of a computationally
plausible decision mechanism.

Results
RL Model Fits to Behavioral Choice Data. A comparison of the choice
probabilities predicted by the RL model and the soft-max proce-
dure to subjects’ actual behavior suggests that the model matches
subjects behavior well. Fig. 1C compares both variables for a typical
subject. Fig. 1D compares the predicted choice probability (binned)
against the actual choice probabilities for the group. A similar linear
regression analysis at the individual level generated an average R2

across subjects of 0.83 and regression coefficients that were signif-
icant at P " 0.001 in each subject.

Action Values. We found neural activity correlating with the action
values for making a hand movement in left supplementary motor
area (SMA; Fig. 2A and Table S2). A region of interest (ROI)
analysis showed that activity in this area satisfied the properties of
a hand action value: it was sensitive to the value of hand movements,
and it showed no response selectivity to the value of eye movements
(Fig. 2B). Activity in lateral parietal cortex, ACC, and right dorsal
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Fig. 1. Experimental Design and Behavior. (A) Subjects were presented with a
choice cue after which they had to respond within 2.5 s by performing a saccade
to the red target circle or a right handed button press. Once a response was
registered the screen was immediately cleared for a short delay and subsequently
theoutcomewasrevealed(6safter trialonset) indicatingeither receiptof reward
or no reward. Inter-trial-intervals varied between 1 and 8 s. (B) Example reward
probabilities for saccades and button presses as a function of the trial number.
The probability of being rewarded following choice of either the hand or eye
movement was varied across the experiment independently for each movement.
(C) Fitted model choice probability (red) and actual choice behavior (blue) shown
for a single subject. (D) Actual choice behavior versus model predicted choice
probability. Data are pooled across subjects, the regression slope is shown as a
line, vertical bars, SEM.
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Fig. 2. Action values. (A) Region of supplementary motor area showing cor-
relations with action values for hand movement (Vh/green) and a region of
pre-SEF showing correlations with action-values for eye movements (Ve/red).
T-maps are shown from a whole brain analysis thresholded at P " 0.001 uncor-
rected (see Fig. S1 for a version with color bars relating to t stats). (B) Average
effect sizes of Ve (red) and Vh (green) extracted from SEF and SMA. The effects
shownherewerecalculatedfromtrials independentof thoseusedtofunctionally
identify the ROI. Note that only Ve but not Vh modulate the signal in preSEF, and
that activity in SMA shows the opposite pattern. Vertical lines, SEM.
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Figure 2: The task. Each trial started with the presentation of a screen (the left most square in the
figure) and the subjects had 2.5 seconds to make an eye saccade to the red target circle or press
a button with their right hand. After a delay (3.5 second) during which the screen showed only a
fixation point, subjects received the outcome of their choice which indicated whether their choice was
rewarded. The next trial started after an inter-trial interval (ITI) that varied between 1 and 8 seconds.
Figure reprinted with permission from Wunderlich et al. [2009]. Copyright (2009) National Academy
of Sciences.

4.1 Task and subjects

The data used here were previously published in Wunderlich et al. [2009]. The structure of the
decision-making task is shown in Figure 2. In each trial subjects had a choice between making
a saccade (EYE) or pressing a button (HAND). Choices were rewarded with varying probabilities
across the experiment. There were four trial types in the task: (i) free-choice trials (150 trials), in
which subjects could choose between EYE and HAND; (ii) forced-choice trials in which subjects
were instructed to choose EYE (50 trials) or (iii) HAND (50 trials); (iv) null trials in which no
reward was received irrespective of the action selected (50 trials). Forced-choices and null trails
were randomly inserted between the free-choice trials. The environment consisted of two actions
(EYE and HAND) and five states corresponding to the four trial types and one state when the choice
outcomes were shown (reward or no-reward). Actions and states are assumed to be coded using
one-hot representations. Since time was discretized (see below), there were time points at which no
action was taken or no visual stimulus was shown, in which case states and actions were coded using
zero vectors.

The total number of subjects was NSUBJ = 22, and in total NACQ = 1136 images were acquired by
the scanner each containing NVOX = 63191 voxels. Therefore, the fMRI data can be summarized as
a tensor of size 22 ⇥ 1136 ⇥ 63191. Each subject made ⇠ 300 choices. See Supplementary Material
for the details of fMRI preprocessing and model settings.

4.2 Model settings

All the methods were implemented in Tensorflow [Abadi et al., 2016] and gradients (for both
optimization and interpretation of the model) were calculated using automatic differentiation methods
available in this package. See Supplementary Material for the model settings.

4.3 From reward to action

Figure 3(a,b) shows two sets of off-policy simulations. In each simulation there are four choice states,
the times of which are shown by the vertical gray patches in the top panels. The red patch following
each grey ribbon shows the time at which the outcome was revealed following the choice. The first
choice was rewarded (shown by ‘R’ in the graph), but the rest were not. In panel (a) action HAND
was selected in all choice states whereas in panel (b) it was action EYE. Based on this, since in
panel (a) the reward was earned when HAND was selected, we expected that choice to decrease the
probability of selecting action EYE on the next choice. This is shown by the blue bars which illustrate
the gradient of the probability of selecting the EYE action at each subsequent choice with respect to
the amount of reward earned after the first choice (d⇡r). For panel (b), since the reward was earned
as a consequence of choosing EYE in the first choice, we expected the reward to have a positive effect
on the probability of selecting EYE on the next trials, which is consistent with the graph.

Next we asked about the intermediation of each brain region between the reward earned after the first
choice (t1) and the next choice (t2), shown by the red arrow in Figure 3(a). To answer this question,
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S1 Model settings

All the methods were implemented in Tensorflow [Abadi et al., 2016] and gradients (for both
optimization and interpretation of the model) were calculated using automatic differentiation methods
available in this package. RMSProp [Tieleman and Hinton, 2012] and Adam [Kingma and Ba, 2014]
optimization algorithms were investigated and RMSProp algorithm showed a faster convergence rate,
and was used here.

The number of cells in the RNN layer was NCELLS = 48, chosen based on computational constraints.
The time of behavioral data was discretized with resolution dt = 0.6625. Similarly for the purpose
of convolving the cells’ outputs with HRF, the output times were discretized with a similar resolution
dt = 0.6625. The choice of this specific dt was because the TR of the scanner (time between
consecutive image recordings) was 2.65, which is divisible by dt, making it possible to perform the
computations efficiently using the strided convolution operator.

For the purpose of regularization we took the following steps: (1) We first performed leave-one-out
cross-validation at the subject level (leaving one subject out) using only the behavioral loss function
to find the behavioral likelihood value on the training data that yielded the highest performance on the
left-out subjects (Figure S2). (2) We used the likelihood value found in the previous step (adjusted
for the number of subjects) to tune � using a search method. That is, we started with an initial value
for � and performed the joint optimization (over the whole dataset); then we adjusted � based on the
value to which the behavioral likelihood function converged in the previous iteration (i.e., decreased
� if the behavioral likelihood converged to a value below the target value, and increased � otherwise),
re-ran the joint optimization again using the new � value, and then iterated over this process. We
were able to find the desired � with three iterations. This procedure encourages the network not to
compromise on behavioral performance, while allowing it to choose amongst behaviorally equivalent
solutions that fit the data best. Note that the same parameter setting was used for all the subjects. We
ideally aimed to estimate � using a validation dataset, but because of the limited number of subjects
here we used in-sample estimations for �.

S2 fMRI data

The details of fMRI data acquisition and preprocessing are described in Wunderlich et al. [2009]. In
addition, the times-series of voxel intensities were passed through a high-pass filter with frequency
0.01Hz, and were also standardized to have a unit variance. Note that data for one of the subjects was
not available and therefore 22 subjects were used in the current analysis instead of the 23 subjects
used in Wunderlich et al. [2009].

HRF is approximated by the mixture of two Gamma functions with the parameters the same as the
default parameters in ‘spm_hrf’ method in SPM package1.

1https://github.com/spm/spm2/blob/master/spm_hrf.m
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For the above equation to hold it is necessary for the state of 
the network to be fully determined by the neural activity (ut). 
This can hold in the case of GRU cells (provided that the 
hidden units do not partition into separate behavioral and 
neural groups). In contrast, in LSTM cells, the cell states and 
cell outputs are different and are both required to determine 
the outputs in the next time-step, and therefore in the case of 
LSTM cells equations do not hold.
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• The model learns to learn the task such that (a) its output matches subjects’ choices; and (b) its internal mechanism tracks subjects’ brain activity.  
• A model trained using this approach ideally provides an end-to-end characterisation of the neural decision-making system.

To look for neural correlates of action values we had to estimate
the value of taking each action in every trial. We calculated the
action values using a computational reinforcement-learning (RL)
model in which the value of each action, Veye and Vhand, was
updated in proportion to a prediction error on each trial (see Table
S1 for a summary of how the different types of value signals relate
to the components of the experiment). The model also assumed
that action selection in every trial followed a soft-max probability
rule based on the difference of the estimated action values (8). To
test for the presence of action value signals in the brain we took the
model predicted trial-by-trial estimates of the two action values and
entered these into a regression analysis against the fMRI data. In
addition to a whole brain screening for the presence of action-value
signals, we specifically looked for them in areas known to be
involved in the planning of motor actions, including supplementary
motor cortex (18–21) and lateral parietal cortex (22, 23). Given that
both of these areas have previously been shown to contain value-
related signals for movements in nonhuman primates, and that they
are closely interconnected with the area of motor cortex involved
in carrying out motor actions (24–26), we considered these areas
prime candidates for containing action-value representations that
could then be used to guide action-based choices. It is important to
emphasize, however, that the tasks used in previous studies did not
make it possible to determine if the value signals identified were
chosen values or action values.

We also looked for areas that are involved in comparing the
action values to make a choice. Two areas of a priori interest were
the anterior cingulate cortex (ACC) and the dorsal striatum. ACC
has been previously implicated in action-based choice, both in the
context of a human imaging study reporting activity in this area
during a task involving choices between different actions compared
to a situation involving responses guided by instruction (27), and in
a monkey lesion study where ACC lesions produced an impairment
in action-outcome based choice but not in mediating changes in
responses following errors (28). Dorsal striatum has been impli-
cated in both goal-directed and habitual instrumental responding
for reward in rodents (29, 30). Moreover, human fMRI studies
reveal increased activity in both of these regions when subjects

make choices to obtain reward compared to an otherwise analogous
situation in which the rewards are obtained without the need to
make a choice (31–34).

The most simple type of comparison process would be to
compute a difference between the two action values. We tested for
such a difference, but as we had no a priori hypothesis about the
directionality of the computation, we tested for both the difference
between the value of the action chosen and the value of action not
chosen (Vchosen ! Vunchosen), and one involving the opposite
difference (Vunchosen ! Vchosen). As we found evidence for such an
action-value comparison signal in the brain, we then proposed a
simple computational model to provide a conceptual explanation as
to how such a signal could reflect the output of a computationally
plausible decision mechanism.

Results
RL Model Fits to Behavioral Choice Data. A comparison of the choice
probabilities predicted by the RL model and the soft-max proce-
dure to subjects’ actual behavior suggests that the model matches
subjects behavior well. Fig. 1C compares both variables for a typical
subject. Fig. 1D compares the predicted choice probability (binned)
against the actual choice probabilities for the group. A similar linear
regression analysis at the individual level generated an average R2

across subjects of 0.83 and regression coefficients that were signif-
icant at P " 0.001 in each subject.

Action Values. We found neural activity correlating with the action
values for making a hand movement in left supplementary motor
area (SMA; Fig. 2A and Table S2). A region of interest (ROI)
analysis showed that activity in this area satisfied the properties of
a hand action value: it was sensitive to the value of hand movements,
and it showed no response selectivity to the value of eye movements
(Fig. 2B). Activity in lateral parietal cortex, ACC, and right dorsal
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Fig. 1. Experimental Design and Behavior. (A) Subjects were presented with a
choice cue after which they had to respond within 2.5 s by performing a saccade
to the red target circle or a right handed button press. Once a response was
registered the screen was immediately cleared for a short delay and subsequently
theoutcomewasrevealed(6safter trialonset) indicatingeither receiptof reward
or no reward. Inter-trial-intervals varied between 1 and 8 s. (B) Example reward
probabilities for saccades and button presses as a function of the trial number.
The probability of being rewarded following choice of either the hand or eye
movement was varied across the experiment independently for each movement.
(C) Fitted model choice probability (red) and actual choice behavior (blue) shown
for a single subject. (D) Actual choice behavior versus model predicted choice
probability. Data are pooled across subjects, the regression slope is shown as a
line, vertical bars, SEM.
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effect sizes of Ve (red) and Vh (green) extracted from SEF and SMA. The effects
shownherewerecalculatedfromtrials independentof thoseusedtofunctionally
identify the ROI. Note that only Ve but not Vh modulate the signal in preSEF, and
that activity in SMA shows the opposite pattern. Vertical lines, SEM.
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to the choices of subjects (with learning-rates etc. as the model parameters) and then finding the
brain regions that are related to the estimated value of each action or other variables of interest [e.g.,
Daw et al., 2006]. One major challenge for this approach is that, even if the model produces actions
similar to the subjects, the variables and summary statistics that the brain explicitly tracks might not
transparently represent the ones the hypothetical model represents. In this case, either the relevant
signals in the brain will be missed in the analysis, or the model will have to be altered manually in
the hope that the new signals in the model resemble neural activity in the brain.

In contrast, here, we propose a new approach using a recurrent neural network as a type of model that
is sufficiently flexible [Siegelmann and Sontag, 1995] to represent the potentially complex neural
computations in the brain, while also closely matching subjects’ choice behavior. In this way, the
model learns to learn the task such that (a) its output matches subjects’ choices; and (b) its internal
mechanism tracks subjects’ brain activity. A model trained using this approach ideally provides an
end-to-end model of neural decision-making circuitry that does not benefit from manual engineering,
but describes how past inputs are translated to future actions through a successive set of computations
occurring in different brain regions.

Having introduced the architecture of this recurrent neural network meta-learner, we show how
to interpret it by unrolling it over space and time to determine the role of each brain region at
each time slice in the path from reward processing to action selection. We show that experimental
results obtained using our method are consistent with the previous literature on the neural basis of
decision-making and provide novel insights into the temporal dynamics of reward processing in the
brain.

2 Related work

There are at least four types of previous approach. In type one, which includes model-based fMRI
analysis and some work on complex non-linear recurrent dynamical systems [Sussillo et al., 2015],
the models are trained on the behavioral data and are only then applied to the neural data. By contrast,
we include neural data at the outset. In a second type recurrent neural networks are trained to perform
a task [e.g., to maximize reward; Song et al., 2017], but without the attention that we give to both the
psychological and neural data. A third type aims to uncover the dynamics of the interaction between
different brain regions by approximating the underlying neural activity (see Breakspear [2017] for
review). However, unlike our protocol, these models are not trained on behavioral data. A fourth
type relies on two separate models for the behavioral and neural data but, unlike model-based fMRI
analyses, the free parameters of the two models are jointly modeled and estimated, e.g., by assuming
that they follow a joint distribution [Turner et al., 2013, Halpern et al., 2018]. Nevertheless, similar to
model-based fMRI, this approach requires manual model engineering and is limited by how well the
hypothesized behavioral model characterizes its underlying neural processes.

3 The model

3.1 Data

We consider a typical neuroscience study of decision-making processes in humans, in which the data
include the actions of a set of subjects while they are making choices and receiving rewards (DBEH)
in a decision-making task, while their brain activity in the form of fMRI images is recorded (DfMRI).

Behavioral data include the states of the environment (described by set S), choices executed by the
subjects in each state, and the rewards they receive. At each time t 2 T i subject i observes state
si

t 2 S as an input, calculates and then executes action ai
t (e.g., presses a button on a computer

keyboard; ai
t 2 A and A is a set of actions) and receives a reward ri

t (e.g., a monetary reward;
ri
t 2 <). The behavioral data can be described as,

DBEH = {(si
ti , a

i
ti , r

i
ti) |i = 1...NSUBJ, t

i 2 T i}. (1)

The second component of the data is the recorded brain activity in the form of 3D images taken by
the scanner during the task. Each image can be divided into a set of voxels (NVOX voxels; e.g., 3mm
x 3mm x 3mm cubes), each of which has an intensity (a scalar number) which represents the neural
activity of the corresponding brain region at the time of image acquisition by the scanner. Images
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brain.

2 Related work

There are at least four types of previous approach. In type one, which includes model-based fMRI
analysis and some work on complex non-linear recurrent dynamical systems [Sussillo et al., 2015],
the models are trained on the behavioral data and are only then applied to the neural data. By contrast,
we include neural data at the outset. In a second type recurrent neural networks are trained to perform
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analyses, the free parameters of the two models are jointly modeled and estimated, e.g., by assuming
that they follow a joint distribution [Turner et al., 2013, Halpern et al., 2018]. Nevertheless, similar to
model-based fMRI, this approach requires manual model engineering and is limited by how well the
hypothesized behavioral model characterizes its underlying neural processes.
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We consider a typical neuroscience study of decision-making processes in humans, in which the data
include the actions of a set of subjects while they are making choices and receiving rewards (DBEH)
in a decision-making task, while their brain activity in the form of fMRI images is recorded (DfMRI).

Behavioral data include the states of the environment (described by set S), choices executed by the
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Figure 1: Architecture of the model. The model has a RNN layer which consists of a set of GRU cells,
and receives previous actions, rewards and the current state of the environment as inputs (NCELLS is
the number of cells in the RNN layer). The outputs/states of the RNN layer (ht) are connected to a
middle layer (shown by red circles) with the same number of units as there are voxels (NVOX); the
outputs of the units ut are weighted sums over their inputs. Each component of ut is convolved
with the HRF signal and is compared to the bias-adjusted intensity of its corresponding voxel in
fMRI recordings (yt). Voxels are shown by the squares overlaying the brain, and three of them are
highlighted (in blue) as an example of how they are connected to the units in the middle layer. The
outputs of the GRU cells are also connected to a softmax layer (the green lines), which outputs the
probability of selecting each action on the next trial (in this case, EYE and HAND are the available
actions). LBEH refers to the behavioral loss function and LfMRI refers to the fMRI loss function. The
final loss function is denoted by L(⇥), which is a weighted sum of the fMRI and the behavioral loss
functions. ⇥ contains all the parameters.

are acquired at times 0, TR, 2TR, . . . , (NACQ � 1)TR, where TR refers to the repetition time of the
scanner (time between image acquisitions), and NACQ is the total number of images. Let yi,v

t denote
the intensity of voxel v recorded at time t for subject i. The fMRI data will take the following form:

DfMRI = {yi,v
t }, t = 0, TR, 2TR, . . . , (NACQ � 1)TR, i = 1 . . . NSUBJ, v = 1 . . . NVOX. (2)

3.2 Network architecture

Actions taken by a subject at each point in time are affected by the history of previous rewards,
actions and states experienced by the subject. Aspects of this history are encoded in neural activity in
a persistent, albeit mutating, form, and enable subjects’ future choices to benefit from past experience.
This process constitutes learning in the task; we aim to recover it by jointly modeling the behavioral
and neural data. We first describe the network architecture and then explain how it can be interpreted
to answer the questions of interest.

RNN layer. The model (Figure 1) is a specific form of recurrent neural network (RNN). The recurrent
layer consists of a set of NCELLS GRU cells [Gated recurrent unit; Cho et al., 2014]; cell c outputs
its state hc

t at time t. We define ht as the state of the whole RNN network (ht = [h1
t , . . . , h

NCELLS
t ]>).

This state summarizes the past history of the inputs to the network and is updated as new inputs are
received according to a function that we denote by f ,

ht = f(at�1, rt�1, st,ht�1; ⇥), (3)

depending on parameters ⇥. We aim to train the parameters of this dynamical system to approximate
the underlying neural computations in the brain that translate previous inputs to future actions during
the task.

fMRI layer. To establish a correspondence between the underlying RNN and neural activity, one
training signal for ⇥ comes from requiring the activity of each voxel at each point in time to be
described as a (noisy) linear combination of GRU cell states (shown by the red connections in Figure 1).
We denote the weights of this linear combination as W 2 <NVOX⇥NCELLS , and ut as a vector of size
NVOX representing predicted neural activity at each voxel at time t. Thus,

ut = Wht. (4)
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Figure 1: Architecture of the model. The model has a RNN layer which consists of a set of GRU cells,
and receives previous actions, rewards and the current state of the environment as inputs (NCELLS is
the number of cells in the RNN layer). The outputs/states of the RNN layer (ht) are connected to a
middle layer (shown by red circles) with the same number of units as there are voxels (NVOX); the
outputs of the units ut are weighted sums over their inputs. Each component of ut is convolved
with the HRF signal and is compared to the bias-adjusted intensity of its corresponding voxel in
fMRI recordings (yt). Voxels are shown by the squares overlaying the brain, and three of them are
highlighted (in blue) as an example of how they are connected to the units in the middle layer. The
outputs of the GRU cells are also connected to a softmax layer (the green lines), which outputs the
probability of selecting each action on the next trial (in this case, EYE and HAND are the available
actions). LBEH refers to the behavioral loss function and LfMRI refers to the fMRI loss function. The
final loss function is denoted by L(⇥), which is a weighted sum of the fMRI and the behavioral loss
functions. ⇥ contains all the parameters.
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to answer the questions of interest.
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Figure 1: Architecture of the model. The model has a RNN layer which consists of a set of GRU cells,
and receives previous actions, rewards and the current state of the environment as inputs (NCELLS is
the number of cells in the RNN layer). The outputs/states of the RNN layer (ht) are connected to a
middle layer (shown by red circles) with the same number of units as there are voxels (NVOX); the
outputs of the units ut are weighted sums over their inputs. Each component of ut is convolved
with the HRF signal and is compared to the bias-adjusted intensity of its corresponding voxel in
fMRI recordings (yt). Voxels are shown by the squares overlaying the brain, and three of them are
highlighted (in blue) as an example of how they are connected to the units in the middle layer. The
outputs of the GRU cells are also connected to a softmax layer (the green lines), which outputs the
probability of selecting each action on the next trial (in this case, EYE and HAND are the available
actions). LBEH refers to the behavioral loss function and LfMRI refers to the fMRI loss function. The
final loss function is denoted by L(⇥), which is a weighted sum of the fMRI and the behavioral loss
functions. ⇥ contains all the parameters.
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and neural data. We first describe the network architecture and then explain how it can be interpreted
to answer the questions of interest.

RNN layer. The model (Figure 1) is a specific form of recurrent neural network (RNN). The recurrent
layer consists of a set of NCELLS GRU cells [Gated recurrent unit; Cho et al., 2014]; cell c outputs
its state hc

t at time t. We define ht as the state of the whole RNN network (ht = [h1
t , . . . , h

NCELLS
t ]>).

This state summarizes the past history of the inputs to the network and is updated as new inputs are
received according to a function that we denote by f ,

ht = f(at�1, rt�1, st,ht�1; ⇥), (3)

depending on parameters ⇥. We aim to train the parameters of this dynamical system to approximate
the underlying neural computations in the brain that translate previous inputs to future actions during
the task.

fMRI layer. To establish a correspondence between the underlying RNN and neural activity, one
training signal for ⇥ comes from requiring the activity of each voxel at each point in time to be
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Figure 1: Architecture of the model. The model has a RNN layer which consists of a set of GRU cells,
and receives previous actions, rewards and the current state of the environment as inputs (NCELLS is
the number of cells in the RNN layer). The outputs/states of the RNN layer (ht) are connected to a
middle layer (shown by red circles) with the same number of units as there are voxels (NVOX); the
outputs of the units ut are weighted sums over their inputs. Each component of ut is convolved
with the HRF signal and is compared to the bias-adjusted intensity of its corresponding voxel in
fMRI recordings (yt). Voxels are shown by the squares overlaying the brain, and three of them are
highlighted (in blue) as an example of how they are connected to the units in the middle layer. The
outputs of the GRU cells are also connected to a softmax layer (the green lines), which outputs the
probability of selecting each action on the next trial (in this case, EYE and HAND are the available
actions). LBEH refers to the behavioral loss function and LfMRI refers to the fMRI loss function. The
final loss function is denoted by L(⇥), which is a weighted sum of the fMRI and the behavioral loss
functions. ⇥ contains all the parameters.
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Figure 1: Architecture of the model. The model has a RNN layer which consists of a set of GRU cells,
and receives previous actions, rewards and the current state of the environment as inputs (NCELLS is
the number of cells in the RNN layer). The outputs/states of the RNN layer (ht) are connected to a
middle layer (shown by red circles) with the same number of units as there are voxels (NVOX); the
outputs of the units ut are weighted sums over their inputs. Each component of ut is convolved
with the HRF signal and is compared to the bias-adjusted intensity of its corresponding voxel in
fMRI recordings (yt). Voxels are shown by the squares overlaying the brain, and three of them are
highlighted (in blue) as an example of how they are connected to the units in the middle layer. The
outputs of the GRU cells are also connected to a softmax layer (the green lines), which outputs the
probability of selecting each action on the next trial (in this case, EYE and HAND are the available
actions). LBEH refers to the behavioral loss function and LfMRI refers to the fMRI loss function. The
final loss function is denoted by L(⇥), which is a weighted sum of the fMRI and the behavioral loss
functions. ⇥ contains all the parameters.
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Figure 1: Architecture of the model. The model has a RNN layer which consists of a set of GRU cells,
and receives previous actions, rewards and the current state of the environment as inputs (NCELLS is
the number of cells in the RNN layer). The outputs/states of the RNN layer (ht) are connected to a
middle layer (shown by red circles) with the same number of units as there are voxels (NVOX); the
outputs of the units ut are weighted sums over their inputs. Each component of ut is convolved
with the HRF signal and is compared to the bias-adjusted intensity of its corresponding voxel in
fMRI recordings (yt). Voxels are shown by the squares overlaying the brain, and three of them are
highlighted (in blue) as an example of how they are connected to the units in the middle layer. The
outputs of the GRU cells are also connected to a softmax layer (the green lines), which outputs the
probability of selecting each action on the next trial (in this case, EYE and HAND are the available
actions). LBEH refers to the behavioral loss function and LfMRI refers to the fMRI loss function. The
final loss function is denoted by L(⇥), which is a weighted sum of the fMRI and the behavioral loss
functions. ⇥ contains all the parameters.
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the task.
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training signal for ⇥ comes from requiring the activity of each voxel at each point in time to be
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We denote the weights of this linear combination as W 2 <NVOX⇥NCELLS , and ut as a vector of size
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For training the model, the predicted neural activity is compared with the actual activity recorded by
the scanner. However, neural activity is not instantly reflected in the intensity recorded by the scanner,
but is delayed according to the haemodynamic response function (HRF; Figure S3). To correct for
this delay, elements of ut are first convolved with HRF [Henson and Friston, 2007], and after adding
a bias term b, are compared with the intensities of the corresponding voxels, to form the following
loss function,

LfMRI(⇥) =
X

t

kut ~ HRF + b � ytk2 , t 2 {0, TR, . . . (NACQ � 1)TR}, (5)

in which ⇥ is the model parameters (W and RNN parameters), yt is a vector of size NVOX containing
the recorded activity of each voxel at time t. Symbol ~ is the convolution operator. The above
loss function can be thought of as the logarithm of a Gaussian likelihood function. Note that in this
case the convolution operator acts on the output of the network, and so this is not a conventional
convolutional neural network, in which convolutions act on the input.

Behavioral layer. To ensure that the RNN also captures the behavioral data, a second training signal
for ⇥ comes from requiring it to produce actions similar to those of humans. This is achieved by
connecting the output of the RNN network to a softmax layer in Figure 1 (shown by the green lines),
in which the weights of the connections determine the influence of each cell on the probability of
selecting actions. Denoting by ⇡t(a) the predicted probability of taking action a at time t, we define
the behavioral loss function as:

LBEH(⇥) = �
X

t2T 0

log ⇡t(at), (6)

in which T 0 refers to the timesteps at which the subject was allowed to execute an action.

Training. We define the overall loss function as the weighted sum of the behavioral and fMRI loss
functions,

L(⇥) =
NSUBJX

i=1

LBEH(⇥; Di) + �LfMRI(⇥; Di), (7)

with parameter � determining the contribution of the fMRI loss function, and Di denoting the data of
subject i. Note the above loss function can be thought of as the logarithm of the multiplication of a
Gaussian likelihood function (for the fMRI part) – with � being related to the level of noise/variance
in the likelihood function – and a multinomial likelihood function (for the behavioral part).

3.3 Interpreting the model

We seek to understand how the inputs to the network (previous rewards, actions, states) affect future
actions through the medium of the brain’s neural activity. Although different methods have been
suggested for investigating the way the inputs to a neural network determine its outputs, the most
fundamental quantity is the gradient of the output with respect to the input, which represents how
much the output changes by changing the input (as used, for instance, by Simonyan et al. [2013] in
the context of an image classification task).

Inspired by this, we defined two differential quantities relating rewards, actions and brain activity to
each other. There are at least two ‘layers’ to this: off- and on-policy. In the off-policy setting, which
is conventionally studied in model-based imaging, there is a fixed sequence of inputs, whose effects
on future predicted probabilities and neural activities we determine. In the on-policy setting, which is
used in settings such as approximate Bayesian computation [Sunnåker et al., 2013], future choices,
and thus future inputs are also affected by past inputs. For the present, we consider the simpler,
off-policy setting. This allows us to look, for instance, at the brain regions involved in mediating the
effect of the reward that subject i actually received at, say, time t1 on the predicted probability of
the action that the subject actually executed at, say, time t2. For convenience, we drop notation for
the fixed inputs for the subject; and indeed for the subject number (since we fit a single model to the
whole group).

The first measure represents the behavioral effects of reward on future actions, which can be calculated
as the gradient of the predicted probabilities of actions at each time t2 with respect to the input
received at time t1. For the case of binary choices, which are the focus of the current experiment, with
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much the output changes by changing the input (as used, for instance, by Simonyan et al. [2013] in
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each other. There are at least two ‘layers’ to this: off- and on-policy. In the off-policy setting, which
is conventionally studied in model-based imaging, there is a fixed sequence of inputs, whose effects
on future predicted probabilities and neural activities we determine. In the on-policy setting, which is
used in settings such as approximate Bayesian computation [Sunnåker et al., 2013], future choices,
and thus future inputs are also affected by past inputs. For the present, we consider the simpler,
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effect of the reward that subject i actually received at, say, time t1 on the predicted probability of
the action that the subject actually executed at, say, time t2. For convenience, we drop notation for
the fixed inputs for the subject; and indeed for the subject number (since we fit a single model to the
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The first measure represents the behavioral effects of reward on future actions, which can be calculated
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Model parameters      include W (red lines), parameters in the softmax layer (green lines) and parameters in the RNN layer.

Hyper-parameter    determines the balance between neural and behavioral data in the combined loss function.

EYE and HAND as the two available actions in the task, we only needed to calculate the probability
for one of the actions. Let ⇡t2 denote the probability of taking action EYE at time t2. The effect of
reward at time t1 on the action at time t2 can be calculated as follows,

d⇡r
t1,t2 =

@⇡t2

@rt1

.

This is a straightforward application of backpropagation (calculated using automatic differentiation),
noting again that we consider the inputs received by the network between t1 and t2 to be fixed. d⇡r

t1,t2
can be thought as capturing how much the probability of taking action EYE at time t2 increases as the
results of increasing the magnitude of reward earned at time t1.

The second measure relates behavioral and fMRI data by exploiting the informational association
between the predicted neural activity ut and the state of RNN, ht. First, note that, at each time t, ht

is a Markov state for the RNN, in that given ht, RNN outputs after time t are independent of their past.
Thus, we can decompose:

@⇡t2

@rt1

=
NCELLSX

k=1

@⇡t2

@hk
t

@hk
t

@rt1

, for any t 2 {t1 + 1 . . . t2}, (8)

as the effect changing rt1 has on the predicted RNN state hk
t at time t, times the effect that a change

in hk
t has on the action probability ⇡t2 at t2. Now, consider the case that W>W is non-singular (note

that NVOX � NCELLS). This implies that there is a one-to-one mapping between the RNN state and
predicted neural activity:

ht = (W>W )�1W>ut . (9)

Thus, we can rewrite equation 8 in terms of the effect changing rt1 has on the predicted neural
activity uv

t in each voxel at time t times what a change in uv
t implies about a change in ⇡t2 , operating

implicitly via what the change in uv
t tells us about a change in ht. We can write this as,

@⇡t2

@rt1

=
NVOXX

v=1

@⇡t2

@uv
t

@uv
t

@rt1

, t = t1 + 1 . . . t2. (10)

Note that this is a correlational relationship – the direction of causality is from ht to ut. Nevertheless
the individual terms in this sum:

d⇡ur
v,t1,t,t2 =

@⇡t2

@uv
t

@uv
t

@rt1

, for any t 2 {t1 + 1 . . . t2}, (11)

combine the influence that voxel uv
t at time t receives from the reward at time t1 (which is @uv

t /@rt1 ),
with the covariation between the voxel activity and the action at time t2 (which is @⇡t2/@uv

t ). This
quantifies the intermediation of voxel uv

t between the reward at t1 and the action at time t2.

We make two remarks: (i) The joint fitting of the model to both the behavioral and fMRI data was
important that, if there are behaviorally equivalent solutions, then the one that can fit the neural data
should be chosen; and (ii) for equation 10 to hold it is necessary for the state of the network to be
fully determined by the neural activity (ut). This can hold in the case of GRU cells (provided that the
hidden units do not partition into separate behavioral and neural groups). In contrast, in LSTM cells
[Long short-term memory; Hochreiter and Schmidhuber, 1997], the cell states and cell outputs are
different and are both required to determine the outputs in the next time-step, and therefore in the
case of LSTM cells equation 10 does not hold.

4 Results

In this section we aim to show how the above measures can be used to study the neural substrates of
decision-making in the brain.
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can be thought as capturing how much the probability of taking action EYE at time t2 increases as the
results of increasing the magnitude of reward earned at time t1.

The second measure relates behavioral and fMRI data by exploiting the informational association
between the predicted neural activity ut and the state of RNN, ht. First, note that, at each time t, ht

is a Markov state for the RNN, in that given ht, RNN outputs after time t are independent of their past.
Thus, we can decompose:
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t has on the action probability ⇡t2 at t2. Now, consider the case that W>W is non-singular (note

that NVOX � NCELLS). This implies that there is a one-to-one mapping between the RNN state and
predicted neural activity:
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Thus, we can rewrite equation 8 in terms of the effect changing rt1 has on the predicted neural
activity uv

t in each voxel at time t times what a change in uv
t implies about a change in ⇡t2 , operating

implicitly via what the change in uv
t tells us about a change in ht. We can write this as,

@⇡t2

@rt1

=
NVOXX

v=1

@⇡t2

@uv
t

@uv
t

@rt1

, t = t1 + 1 . . . t2. (10)
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t at time t receives from the reward at time t1 (which is @uv

t /@rt1 ),
with the covariation between the voxel activity and the action at time t2 (which is @⇡t2/@uv

t ). This
quantifies the intermediation of voxel uv

t between the reward at t1 and the action at time t2.

We make two remarks: (i) The joint fitting of the model to both the behavioral and fMRI data was
important that, if there are behaviorally equivalent solutions, then the one that can fit the neural data
should be chosen; and (ii) for equation 10 to hold it is necessary for the state of the network to be
fully determined by the neural activity (ut). This can hold in the case of GRU cells (provided that the
hidden units do not partition into separate behavioral and neural groups). In contrast, in LSTM cells
[Long short-term memory; Hochreiter and Schmidhuber, 1997], the cell states and cell outputs are
different and are both required to determine the outputs in the next time-step, and therefore in the
case of LSTM cells equation 10 does not hold.

4 Results

In this section we aim to show how the above measures can be used to study the neural substrates of
decision-making in the brain.
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To look for neural correlates of action values we had to estimate

the value of taking each action in every trial. We calculated the
action values using a computational reinforcement-learning (RL)
model in which the value of each action, Veye and Vhand, was
updated in proportion to a prediction error on each trial (see Table
S1 for a summary of how the different types of value signals relate
to the components of the experiment). The model also assumed
that action selection in every trial followed a soft-max probability
rule based on the difference of the estimated action values (8). To
test for the presence of action value signals in the brain we took the
model predicted trial-by-trial estimates of the two action values and
entered these into a regression analysis against the fMRI data. In
addition to a whole brain screening for the presence of action-value
signals, we specifically looked for them in areas known to be
involved in the planning of motor actions, including supplementary
motor cortex (18–21) and lateral parietal cortex (22, 23). Given that
both of these areas have previously been shown to contain value-
related signals for movements in nonhuman primates, and that they
are closely interconnected with the area of motor cortex involved
in carrying out motor actions (24–26), we considered these areas
prime candidates for containing action-value representations that
could then be used to guide action-based choices. It is important to
emphasize, however, that the tasks used in previous studies did not
make it possible to determine if the value signals identified were
chosen values or action values.

We also looked for areas that are involved in comparing the
action values to make a choice. Two areas of a priori interest were
the anterior cingulate cortex (ACC) and the dorsal striatum. ACC
has been previously implicated in action-based choice, both in the
context of a human imaging study reporting activity in this area
during a task involving choices between different actions compared
to a situation involving responses guided by instruction (27), and in
a monkey lesion study where ACC lesions produced an impairment
in action-outcome based choice but not in mediating changes in
responses following errors (28). Dorsal striatum has been impli-
cated in both goal-directed and habitual instrumental responding
for reward in rodents (29, 30). Moreover, human fMRI studies
reveal increased activity in both of these regions when subjects

make choices to obtain reward compared to an otherwise analogous
situation in which the rewards are obtained without the need to
make a choice (31–34).

The most simple type of comparison process would be to
compute a difference between the two action values. We tested for
such a difference, but as we had no a priori hypothesis about the
directionality of the computation, we tested for both the difference
between the value of the action chosen and the value of action not
chosen (Vchosen ! Vunchosen), and one involving the opposite
difference (Vunchosen ! Vchosen). As we found evidence for such an
action-value comparison signal in the brain, we then proposed a
simple computational model to provide a conceptual explanation as
to how such a signal could reflect the output of a computationally
plausible decision mechanism.

Results
RL Model Fits to Behavioral Choice Data. A comparison of the choice
probabilities predicted by the RL model and the soft-max proce-
dure to subjects’ actual behavior suggests that the model matches
subjects behavior well. Fig. 1C compares both variables for a typical
subject. Fig. 1D compares the predicted choice probability (binned)
against the actual choice probabilities for the group. A similar linear
regression analysis at the individual level generated an average R2

across subjects of 0.83 and regression coefficients that were signif-
icant at P " 0.001 in each subject.

Action Values. We found neural activity correlating with the action
values for making a hand movement in left supplementary motor
area (SMA; Fig. 2A and Table S2). A region of interest (ROI)
analysis showed that activity in this area satisfied the properties of
a hand action value: it was sensitive to the value of hand movements,
and it showed no response selectivity to the value of eye movements
(Fig. 2B). Activity in lateral parietal cortex, ACC, and right dorsal
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Fig. 1. Experimental Design and Behavior. (A) Subjects were presented with a
choice cue after which they had to respond within 2.5 s by performing a saccade
to the red target circle or a right handed button press. Once a response was
registered the screen was immediately cleared for a short delay and subsequently
theoutcomewasrevealed(6safter trialonset) indicatingeither receiptof reward
or no reward. Inter-trial-intervals varied between 1 and 8 s. (B) Example reward
probabilities for saccades and button presses as a function of the trial number.
The probability of being rewarded following choice of either the hand or eye
movement was varied across the experiment independently for each movement.
(C) Fitted model choice probability (red) and actual choice behavior (blue) shown
for a single subject. (D) Actual choice behavior versus model predicted choice
probability. Data are pooled across subjects, the regression slope is shown as a
line, vertical bars, SEM.
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Fig. 2. Action values. (A) Region of supplementary motor area showing cor-
relations with action values for hand movement (Vh/green) and a region of
pre-SEF showing correlations with action-values for eye movements (Ve/red).
T-maps are shown from a whole brain analysis thresholded at P " 0.001 uncor-
rected (see Fig. S1 for a version with color bars relating to t stats). (B) Average
effect sizes of Ve (red) and Vh (green) extracted from SEF and SMA. The effects
shownherewerecalculatedfromtrials independentof thoseusedtofunctionally
identify the ROI. Note that only Ve but not Vh modulate the signal in preSEF, and
that activity in SMA shows the opposite pattern. Vertical lines, SEM.

17200 ! www.pnas.org"cgi"doi"10.1073"pnas.0901077106 Wunderlich et al.

Figure 2: The task. Each trial started with the presentation of a screen (the left most square in the
figure) and the subjects had 2.5 seconds to make an eye saccade to the red target circle or press
a button with their right hand. After a delay (3.5 second) during which the screen showed only a
fixation point, subjects received the outcome of their choice which indicated whether their choice was
rewarded. The next trial started after an inter-trial interval (ITI) that varied between 1 and 8 seconds.
Figure reprinted with permission from Wunderlich et al. [2009]. Copyright (2009) National Academy
of Sciences.

4.1 Task and subjects

The data used here were previously published in Wunderlich et al. [2009]. The structure of the
decision-making task is shown in Figure 2. In each trial subjects had a choice between making
a saccade (EYE) or pressing a button (HAND). Choices were rewarded with varying probabilities
across the experiment. There were four trial types in the task: (i) free-choice trials (150 trials), in
which subjects could choose between EYE and HAND; (ii) forced-choice trials in which subjects
were instructed to choose EYE (50 trials) or (iii) HAND (50 trials); (iv) null trials in which no
reward was received irrespective of the action selected (50 trials). Forced-choices and null trails
were randomly inserted between the free-choice trials. The environment consisted of two actions
(EYE and HAND) and five states corresponding to the four trial types and one state when the choice
outcomes were shown (reward or no-reward). Actions and states are assumed to be coded using
one-hot representations. Since time was discretized (see below), there were time points at which no
action was taken or no visual stimulus was shown, in which case states and actions were coded using
zero vectors.

The total number of subjects was NSUBJ = 22, and in total NACQ = 1136 images were acquired by
the scanner each containing NVOX = 63191 voxels. Therefore, the fMRI data can be summarized as
a tensor of size 22 ⇥ 1136 ⇥ 63191. Each subject made ⇠ 300 choices. See Supplementary Material
for the details of fMRI preprocessing and model settings.

4.2 Model settings

All the methods were implemented in Tensorflow [Abadi et al., 2016] and gradients (for both
optimization and interpretation of the model) were calculated using automatic differentiation methods
available in this package. See Supplementary Material for the model settings.

4.3 From reward to action

Figure 3(a,b) shows two sets of off-policy simulations. In each simulation there are four choice states,
the times of which are shown by the vertical gray patches in the top panels. The red patch following
each grey ribbon shows the time at which the outcome was revealed following the choice. The first
choice was rewarded (shown by ‘R’ in the graph), but the rest were not. In panel (a) action HAND
was selected in all choice states whereas in panel (b) it was action EYE. Based on this, since in
panel (a) the reward was earned when HAND was selected, we expected that choice to decrease the
probability of selecting action EYE on the next choice. This is shown by the blue bars which illustrate
the gradient of the probability of selecting the EYE action at each subsequent choice with respect to
the amount of reward earned after the first choice (d⇡r). For panel (b), since the reward was earned
as a consequence of choosing EYE in the first choice, we expected the reward to have a positive effect
on the probability of selecting EYE on the next trials, which is consistent with the graph.

Next we asked about the intermediation of each brain region between the reward earned after the first
choice (t1) and the next choice (t2), shown by the red arrow in Figure 3(a). To answer this question,
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To look for neural correlates of action values we had to estimate
the value of taking each action in every trial. We calculated the
action values using a computational reinforcement-learning (RL)
model in which the value of each action, Veye and Vhand, was
updated in proportion to a prediction error on each trial (see Table
S1 for a summary of how the different types of value signals relate
to the components of the experiment). The model also assumed
that action selection in every trial followed a soft-max probability
rule based on the difference of the estimated action values (8). To
test for the presence of action value signals in the brain we took the
model predicted trial-by-trial estimates of the two action values and
entered these into a regression analysis against the fMRI data. In
addition to a whole brain screening for the presence of action-value
signals, we specifically looked for them in areas known to be
involved in the planning of motor actions, including supplementary
motor cortex (18–21) and lateral parietal cortex (22, 23). Given that
both of these areas have previously been shown to contain value-
related signals for movements in nonhuman primates, and that they
are closely interconnected with the area of motor cortex involved
in carrying out motor actions (24–26), we considered these areas
prime candidates for containing action-value representations that
could then be used to guide action-based choices. It is important to
emphasize, however, that the tasks used in previous studies did not
make it possible to determine if the value signals identified were
chosen values or action values.

We also looked for areas that are involved in comparing the
action values to make a choice. Two areas of a priori interest were
the anterior cingulate cortex (ACC) and the dorsal striatum. ACC
has been previously implicated in action-based choice, both in the
context of a human imaging study reporting activity in this area
during a task involving choices between different actions compared
to a situation involving responses guided by instruction (27), and in
a monkey lesion study where ACC lesions produced an impairment
in action-outcome based choice but not in mediating changes in
responses following errors (28). Dorsal striatum has been impli-
cated in both goal-directed and habitual instrumental responding
for reward in rodents (29, 30). Moreover, human fMRI studies
reveal increased activity in both of these regions when subjects

make choices to obtain reward compared to an otherwise analogous
situation in which the rewards are obtained without the need to
make a choice (31–34).

The most simple type of comparison process would be to
compute a difference between the two action values. We tested for
such a difference, but as we had no a priori hypothesis about the
directionality of the computation, we tested for both the difference
between the value of the action chosen and the value of action not
chosen (Vchosen ! Vunchosen), and one involving the opposite
difference (Vunchosen ! Vchosen). As we found evidence for such an
action-value comparison signal in the brain, we then proposed a
simple computational model to provide a conceptual explanation as
to how such a signal could reflect the output of a computationally
plausible decision mechanism.

Results
RL Model Fits to Behavioral Choice Data. A comparison of the choice
probabilities predicted by the RL model and the soft-max proce-
dure to subjects’ actual behavior suggests that the model matches
subjects behavior well. Fig. 1C compares both variables for a typical
subject. Fig. 1D compares the predicted choice probability (binned)
against the actual choice probabilities for the group. A similar linear
regression analysis at the individual level generated an average R2

across subjects of 0.83 and regression coefficients that were signif-
icant at P " 0.001 in each subject.

Action Values. We found neural activity correlating with the action
values for making a hand movement in left supplementary motor
area (SMA; Fig. 2A and Table S2). A region of interest (ROI)
analysis showed that activity in this area satisfied the properties of
a hand action value: it was sensitive to the value of hand movements,
and it showed no response selectivity to the value of eye movements
(Fig. 2B). Activity in lateral parietal cortex, ACC, and right dorsal
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Fig. 1. Experimental Design and Behavior. (A) Subjects were presented with a
choice cue after which they had to respond within 2.5 s by performing a saccade
to the red target circle or a right handed button press. Once a response was
registered the screen was immediately cleared for a short delay and subsequently
theoutcomewasrevealed(6safter trialonset) indicatingeither receiptof reward
or no reward. Inter-trial-intervals varied between 1 and 8 s. (B) Example reward
probabilities for saccades and button presses as a function of the trial number.
The probability of being rewarded following choice of either the hand or eye
movement was varied across the experiment independently for each movement.
(C) Fitted model choice probability (red) and actual choice behavior (blue) shown
for a single subject. (D) Actual choice behavior versus model predicted choice
probability. Data are pooled across subjects, the regression slope is shown as a
line, vertical bars, SEM.
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Fig. 2. Action values. (A) Region of supplementary motor area showing cor-
relations with action values for hand movement (Vh/green) and a region of
pre-SEF showing correlations with action-values for eye movements (Ve/red).
T-maps are shown from a whole brain analysis thresholded at P " 0.001 uncor-
rected (see Fig. S1 for a version with color bars relating to t stats). (B) Average
effect sizes of Ve (red) and Vh (green) extracted from SEF and SMA. The effects
shownherewerecalculatedfromtrials independentof thoseusedtofunctionally
identify the ROI. Note that only Ve but not Vh modulate the signal in preSEF, and
that activity in SMA shows the opposite pattern. Vertical lines, SEM.
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Figure 2: The task. Each trial started with the presentation of a screen (the left most square in the
figure) and the subjects had 2.5 seconds to make an eye saccade to the red target circle or press
a button with their right hand. After a delay (3.5 second) during which the screen showed only a
fixation point, subjects received the outcome of their choice which indicated whether their choice was
rewarded. The next trial started after an inter-trial interval (ITI) that varied between 1 and 8 seconds.
Figure reprinted with permission from Wunderlich et al. [2009]. Copyright (2009) National Academy
of Sciences.

4.1 Task and subjects

The data used here were previously published in Wunderlich et al. [2009]. The structure of the
decision-making task is shown in Figure 2. In each trial subjects had a choice between making
a saccade (EYE) or pressing a button (HAND). Choices were rewarded with varying probabilities
across the experiment. There were four trial types in the task: (i) free-choice trials (150 trials), in
which subjects could choose between EYE and HAND; (ii) forced-choice trials in which subjects
were instructed to choose EYE (50 trials) or (iii) HAND (50 trials); (iv) null trials in which no
reward was received irrespective of the action selected (50 trials). Forced-choices and null trails
were randomly inserted between the free-choice trials. The environment consisted of two actions
(EYE and HAND) and five states corresponding to the four trial types and one state when the choice
outcomes were shown (reward or no-reward). Actions and states are assumed to be coded using
one-hot representations. Since time was discretized (see below), there were time points at which no
action was taken or no visual stimulus was shown, in which case states and actions were coded using
zero vectors.

The total number of subjects was NSUBJ = 22, and in total NACQ = 1136 images were acquired by
the scanner each containing NVOX = 63191 voxels. Therefore, the fMRI data can be summarized as
a tensor of size 22 ⇥ 1136 ⇥ 63191. Each subject made ⇠ 300 choices. See Supplementary Material
for the details of fMRI preprocessing and model settings.

4.2 Model settings

All the methods were implemented in Tensorflow [Abadi et al., 2016] and gradients (for both
optimization and interpretation of the model) were calculated using automatic differentiation methods
available in this package. See Supplementary Material for the model settings.

4.3 From reward to action

Figure 3(a,b) shows two sets of off-policy simulations. In each simulation there are four choice states,
the times of which are shown by the vertical gray patches in the top panels. The red patch following
each grey ribbon shows the time at which the outcome was revealed following the choice. The first
choice was rewarded (shown by ‘R’ in the graph), but the rest were not. In panel (a) action HAND
was selected in all choice states whereas in panel (b) it was action EYE. Based on this, since in
panel (a) the reward was earned when HAND was selected, we expected that choice to decrease the
probability of selecting action EYE on the next choice. This is shown by the blue bars which illustrate
the gradient of the probability of selecting the EYE action at each subsequent choice with respect to
the amount of reward earned after the first choice (d⇡r). For panel (b), since the reward was earned
as a consequence of choosing EYE in the first choice, we expected the reward to have a positive effect
on the probability of selecting EYE on the next trials, which is consistent with the graph.

Next we asked about the intermediation of each brain region between the reward earned after the first
choice (t1) and the next choice (t2), shown by the red arrow in Figure 3(a). To answer this question,
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action values using a computational reinforcement-learning (RL)
model in which the value of each action, Veye and Vhand, was
updated in proportion to a prediction error on each trial (see Table
S1 for a summary of how the different types of value signals relate
to the components of the experiment). The model also assumed
that action selection in every trial followed a soft-max probability
rule based on the difference of the estimated action values (8). To
test for the presence of action value signals in the brain we took the
model predicted trial-by-trial estimates of the two action values and
entered these into a regression analysis against the fMRI data. In
addition to a whole brain screening for the presence of action-value
signals, we specifically looked for them in areas known to be
involved in the planning of motor actions, including supplementary
motor cortex (18–21) and lateral parietal cortex (22, 23). Given that
both of these areas have previously been shown to contain value-
related signals for movements in nonhuman primates, and that they
are closely interconnected with the area of motor cortex involved
in carrying out motor actions (24–26), we considered these areas
prime candidates for containing action-value representations that
could then be used to guide action-based choices. It is important to
emphasize, however, that the tasks used in previous studies did not
make it possible to determine if the value signals identified were
chosen values or action values.

We also looked for areas that are involved in comparing the
action values to make a choice. Two areas of a priori interest were
the anterior cingulate cortex (ACC) and the dorsal striatum. ACC
has been previously implicated in action-based choice, both in the
context of a human imaging study reporting activity in this area
during a task involving choices between different actions compared
to a situation involving responses guided by instruction (27), and in
a monkey lesion study where ACC lesions produced an impairment
in action-outcome based choice but not in mediating changes in
responses following errors (28). Dorsal striatum has been impli-
cated in both goal-directed and habitual instrumental responding
for reward in rodents (29, 30). Moreover, human fMRI studies
reveal increased activity in both of these regions when subjects

make choices to obtain reward compared to an otherwise analogous
situation in which the rewards are obtained without the need to
make a choice (31–34).

The most simple type of comparison process would be to
compute a difference between the two action values. We tested for
such a difference, but as we had no a priori hypothesis about the
directionality of the computation, we tested for both the difference
between the value of the action chosen and the value of action not
chosen (Vchosen ! Vunchosen), and one involving the opposite
difference (Vunchosen ! Vchosen). As we found evidence for such an
action-value comparison signal in the brain, we then proposed a
simple computational model to provide a conceptual explanation as
to how such a signal could reflect the output of a computationally
plausible decision mechanism.

Results
RL Model Fits to Behavioral Choice Data. A comparison of the choice
probabilities predicted by the RL model and the soft-max proce-
dure to subjects’ actual behavior suggests that the model matches
subjects behavior well. Fig. 1C compares both variables for a typical
subject. Fig. 1D compares the predicted choice probability (binned)
against the actual choice probabilities for the group. A similar linear
regression analysis at the individual level generated an average R2

across subjects of 0.83 and regression coefficients that were signif-
icant at P " 0.001 in each subject.

Action Values. We found neural activity correlating with the action
values for making a hand movement in left supplementary motor
area (SMA; Fig. 2A and Table S2). A region of interest (ROI)
analysis showed that activity in this area satisfied the properties of
a hand action value: it was sensitive to the value of hand movements,
and it showed no response selectivity to the value of eye movements
(Fig. 2B). Activity in lateral parietal cortex, ACC, and right dorsal
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Fig. 1. Experimental Design and Behavior. (A) Subjects were presented with a
choice cue after which they had to respond within 2.5 s by performing a saccade
to the red target circle or a right handed button press. Once a response was
registered the screen was immediately cleared for a short delay and subsequently
theoutcomewasrevealed(6safter trialonset) indicatingeither receiptof reward
or no reward. Inter-trial-intervals varied between 1 and 8 s. (B) Example reward
probabilities for saccades and button presses as a function of the trial number.
The probability of being rewarded following choice of either the hand or eye
movement was varied across the experiment independently for each movement.
(C) Fitted model choice probability (red) and actual choice behavior (blue) shown
for a single subject. (D) Actual choice behavior versus model predicted choice
probability. Data are pooled across subjects, the regression slope is shown as a
line, vertical bars, SEM.
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Fig. 2. Action values. (A) Region of supplementary motor area showing cor-
relations with action values for hand movement (Vh/green) and a region of
pre-SEF showing correlations with action-values for eye movements (Ve/red).
T-maps are shown from a whole brain analysis thresholded at P " 0.001 uncor-
rected (see Fig. S1 for a version with color bars relating to t stats). (B) Average
effect sizes of Ve (red) and Vh (green) extracted from SEF and SMA. The effects
shownherewerecalculatedfromtrials independentof thoseusedtofunctionally
identify the ROI. Note that only Ve but not Vh modulate the signal in preSEF, and
that activity in SMA shows the opposite pattern. Vertical lines, SEM.
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Figure 2: The task. Each trial started with the presentation of a screen (the left most square in the
figure) and the subjects had 2.5 seconds to make an eye saccade to the red target circle or press
a button with their right hand. After a delay (3.5 second) during which the screen showed only a
fixation point, subjects received the outcome of their choice which indicated whether their choice was
rewarded. The next trial started after an inter-trial interval (ITI) that varied between 1 and 8 seconds.
Figure reprinted with permission from Wunderlich et al. [2009]. Copyright (2009) National Academy
of Sciences.

4.1 Task and subjects

The data used here were previously published in Wunderlich et al. [2009]. The structure of the
decision-making task is shown in Figure 2. In each trial subjects had a choice between making
a saccade (EYE) or pressing a button (HAND). Choices were rewarded with varying probabilities
across the experiment. There were four trial types in the task: (i) free-choice trials (150 trials), in
which subjects could choose between EYE and HAND; (ii) forced-choice trials in which subjects
were instructed to choose EYE (50 trials) or (iii) HAND (50 trials); (iv) null trials in which no
reward was received irrespective of the action selected (50 trials). Forced-choices and null trails
were randomly inserted between the free-choice trials. The environment consisted of two actions
(EYE and HAND) and five states corresponding to the four trial types and one state when the choice
outcomes were shown (reward or no-reward). Actions and states are assumed to be coded using
one-hot representations. Since time was discretized (see below), there were time points at which no
action was taken or no visual stimulus was shown, in which case states and actions were coded using
zero vectors.

The total number of subjects was NSUBJ = 22, and in total NACQ = 1136 images were acquired by
the scanner each containing NVOX = 63191 voxels. Therefore, the fMRI data can be summarized as
a tensor of size 22 ⇥ 1136 ⇥ 63191. Each subject made ⇠ 300 choices. See Supplementary Material
for the details of fMRI preprocessing and model settings.

4.2 Model settings

All the methods were implemented in Tensorflow [Abadi et al., 2016] and gradients (for both
optimization and interpretation of the model) were calculated using automatic differentiation methods
available in this package. See Supplementary Material for the model settings.

4.3 From reward to action

Figure 3(a,b) shows two sets of off-policy simulations. In each simulation there are four choice states,
the times of which are shown by the vertical gray patches in the top panels. The red patch following
each grey ribbon shows the time at which the outcome was revealed following the choice. The first
choice was rewarded (shown by ‘R’ in the graph), but the rest were not. In panel (a) action HAND
was selected in all choice states whereas in panel (b) it was action EYE. Based on this, since in
panel (a) the reward was earned when HAND was selected, we expected that choice to decrease the
probability of selecting action EYE on the next choice. This is shown by the blue bars which illustrate
the gradient of the probability of selecting the EYE action at each subsequent choice with respect to
the amount of reward earned after the first choice (d⇡r). For panel (b), since the reward was earned
as a consequence of choosing EYE in the first choice, we expected the reward to have a positive effect
on the probability of selecting EYE on the next trials, which is consistent with the graph.

Next we asked about the intermediation of each brain region between the reward earned after the first
choice (t1) and the next choice (t2), shown by the red arrow in Figure 3(a). To answer this question,
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behavioral: how much earning the reward increases the 
chance of choosing button press again?
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• We calculated                for every voxel and every time-step between    and    , and masked out the voxels that were not in 
the top one percent. By focusing only on the 99th percentile of  |          |   , we hoped to limit our analysis to the circuitry 
known to be involved in decision-making.

EYE and HAND as the two available actions in the task, we only needed to calculate the probability
for one of the actions. Let ⇡t2 denote the probability of taking action EYE at time t2. The effect of
reward at time t1 on the action at time t2 can be calculated as follows,

d⇡r
t1,t2 =
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@rt1

.

This is a straightforward application of backpropagation (calculated using automatic differentiation),
noting again that we consider the inputs received by the network between t1 and t2 to be fixed. d⇡r

t1,t2
can be thought as capturing how much the probability of taking action EYE at time t2 increases as the
results of increasing the magnitude of reward earned at time t1.

The second measure relates behavioral and fMRI data by exploiting the informational association
between the predicted neural activity ut and the state of RNN, ht. First, note that, at each time t, ht

is a Markov state for the RNN, in that given ht, RNN outputs after time t are independent of their past.
Thus, we can decompose:
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t has on the action probability ⇡t2 at t2. Now, consider the case that W>W is non-singular (note

that NVOX � NCELLS). This implies that there is a one-to-one mapping between the RNN state and
predicted neural activity:

ht = (W>W )�1W>ut . (9)

Thus, we can rewrite equation 8 in terms of the effect changing rt1 has on the predicted neural
activity uv

t in each voxel at time t times what a change in uv
t implies about a change in ⇡t2 , operating

implicitly via what the change in uv
t tells us about a change in ht. We can write this as,
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Note that this is a correlational relationship – the direction of causality is from ht to ut. Nevertheless
the individual terms in this sum:
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, for any t 2 {t1 + 1 . . . t2}, (11)

combine the influence that voxel uv
t at time t receives from the reward at time t1 (which is @uv

t /@rt1 ),
with the covariation between the voxel activity and the action at time t2 (which is @⇡t2/@uv

t ). This
quantifies the intermediation of voxel uv

t between the reward at t1 and the action at time t2.

We make two remarks: (i) The joint fitting of the model to both the behavioral and fMRI data was
important that, if there are behaviorally equivalent solutions, then the one that can fit the neural data
should be chosen; and (ii) for equation 10 to hold it is necessary for the state of the network to be
fully determined by the neural activity (ut). This can hold in the case of GRU cells (provided that the
hidden units do not partition into separate behavioral and neural groups). In contrast, in LSTM cells
[Long short-term memory; Hochreiter and Schmidhuber, 1997], the cell states and cell outputs are
different and are both required to determine the outputs in the next time-step, and therefore in the
case of LSTM cells equation 10 does not hold.

4 Results

In this section we aim to show how the above measures can be used to study the neural substrates of
decision-making in the brain.
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to the choices of subjects (with learning-rates etc. as the model parameters) and then finding the
brain regions that are related to the estimated value of each action or other variables of interest [e.g.,
Daw et al., 2006]. One major challenge for this approach is that, even if the model produces actions
similar to the subjects, the variables and summary statistics that the brain explicitly tracks might not
transparently represent the ones the hypothetical model represents. In this case, either the relevant
signals in the brain will be missed in the analysis, or the model will have to be altered manually in
the hope that the new signals in the model resemble neural activity in the brain.

In contrast, here, we propose a new approach using a recurrent neural network as a type of model that
is sufficiently flexible [Siegelmann and Sontag, 1995] to represent the potentially complex neural
computations in the brain, while also closely matching subjects’ choice behavior. In this way, the
model learns to learn the task such that (a) its output matches subjects’ choices; and (b) its internal
mechanism tracks subjects’ brain activity. A model trained using this approach ideally provides an
end-to-end model of neural decision-making circuitry that does not benefit from manual engineering,
but describes how past inputs are translated to future actions through a successive set of computations
occurring in different brain regions.

Having introduced the architecture of this recurrent neural network meta-learner, we show how
to interpret it by unrolling it over space and time to determine the role of each brain region at
each time slice in the path from reward processing to action selection. We show that experimental
results obtained using our method are consistent with the previous literature on the neural basis of
decision-making and provide novel insights into the temporal dynamics of reward processing in the
brain.

2 Related work

There are at least four types of previous approach. In type one, which includes model-based fMRI
analysis and some work on complex non-linear recurrent dynamical systems [Sussillo et al., 2015],
the models are trained on the behavioral data and are only then applied to the neural data. By contrast,
we include neural data at the outset. In a second type recurrent neural networks are trained to perform
a task [e.g., to maximize reward; Song et al., 2017], but without the attention that we give to both the
psychological and neural data. A third type aims to uncover the dynamics of the interaction between
different brain regions by approximating the underlying neural activity (see Breakspear [2017] for
review). However, unlike our protocol, these models are not trained on behavioral data. A fourth
type relies on two separate models for the behavioral and neural data but, unlike model-based fMRI
analyses, the free parameters of the two models are jointly modeled and estimated, e.g., by assuming
that they follow a joint distribution [Turner et al., 2013, Halpern et al., 2018]. Nevertheless, similar to
model-based fMRI, this approach requires manual model engineering and is limited by how well the
hypothesized behavioral model characterizes its underlying neural processes.

3 The model

3.1 Data

We consider a typical neuroscience study of decision-making processes in humans, in which the data
include the actions of a set of subjects while they are making choices and receiving rewards (DBEH)
in a decision-making task, while their brain activity in the form of fMRI images is recorded (DfMRI).

Behavioral data include the states of the environment (described by set S), choices executed by the
subjects in each state, and the rewards they receive. At each time t 2 T i subject i observes state
si

t 2 S as an input, calculates and then executes action ai
t (e.g., presses a button on a computer

keyboard; ai
t 2 A and A is a set of actions) and receives a reward ri

t (e.g., a monetary reward;
ri
t 2 <). The behavioral data can be described as,

t = 0 (1)

The second component of the data is the recorded brain activity in the form of 3D images taken by
the scanner during the task. Each image can be divided into a set of voxels (NVOX voxels; e.g., 3mm
x 3mm x 3mm cubes), each of which has an intensity (a scalar number) which represents the neural
activity of the corresponding brain region at the time of image acquisition by the scanner. Images
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To look for neural correlates of action values we had to estimate
the value of taking each action in every trial. We calculated the
action values using a computational reinforcement-learning (RL)
model in which the value of each action, Veye and Vhand, was
updated in proportion to a prediction error on each trial (see Table
S1 for a summary of how the different types of value signals relate
to the components of the experiment). The model also assumed
that action selection in every trial followed a soft-max probability
rule based on the difference of the estimated action values (8). To
test for the presence of action value signals in the brain we took the
model predicted trial-by-trial estimates of the two action values and
entered these into a regression analysis against the fMRI data. In
addition to a whole brain screening for the presence of action-value
signals, we specifically looked for them in areas known to be
involved in the planning of motor actions, including supplementary
motor cortex (18–21) and lateral parietal cortex (22, 23). Given that
both of these areas have previously been shown to contain value-
related signals for movements in nonhuman primates, and that they
are closely interconnected with the area of motor cortex involved
in carrying out motor actions (24–26), we considered these areas
prime candidates for containing action-value representations that
could then be used to guide action-based choices. It is important to
emphasize, however, that the tasks used in previous studies did not
make it possible to determine if the value signals identified were
chosen values or action values.

We also looked for areas that are involved in comparing the
action values to make a choice. Two areas of a priori interest were
the anterior cingulate cortex (ACC) and the dorsal striatum. ACC
has been previously implicated in action-based choice, both in the
context of a human imaging study reporting activity in this area
during a task involving choices between different actions compared
to a situation involving responses guided by instruction (27), and in
a monkey lesion study where ACC lesions produced an impairment
in action-outcome based choice but not in mediating changes in
responses following errors (28). Dorsal striatum has been impli-
cated in both goal-directed and habitual instrumental responding
for reward in rodents (29, 30). Moreover, human fMRI studies
reveal increased activity in both of these regions when subjects

make choices to obtain reward compared to an otherwise analogous
situation in which the rewards are obtained without the need to
make a choice (31–34).

The most simple type of comparison process would be to
compute a difference between the two action values. We tested for
such a difference, but as we had no a priori hypothesis about the
directionality of the computation, we tested for both the difference
between the value of the action chosen and the value of action not
chosen (Vchosen ! Vunchosen), and one involving the opposite
difference (Vunchosen ! Vchosen). As we found evidence for such an
action-value comparison signal in the brain, we then proposed a
simple computational model to provide a conceptual explanation as
to how such a signal could reflect the output of a computationally
plausible decision mechanism.

Results
RL Model Fits to Behavioral Choice Data. A comparison of the choice
probabilities predicted by the RL model and the soft-max proce-
dure to subjects’ actual behavior suggests that the model matches
subjects behavior well. Fig. 1C compares both variables for a typical
subject. Fig. 1D compares the predicted choice probability (binned)
against the actual choice probabilities for the group. A similar linear
regression analysis at the individual level generated an average R2

across subjects of 0.83 and regression coefficients that were signif-
icant at P " 0.001 in each subject.

Action Values. We found neural activity correlating with the action
values for making a hand movement in left supplementary motor
area (SMA; Fig. 2A and Table S2). A region of interest (ROI)
analysis showed that activity in this area satisfied the properties of
a hand action value: it was sensitive to the value of hand movements,
and it showed no response selectivity to the value of eye movements
(Fig. 2B). Activity in lateral parietal cortex, ACC, and right dorsal
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Fig. 1. Experimental Design and Behavior. (A) Subjects were presented with a
choice cue after which they had to respond within 2.5 s by performing a saccade
to the red target circle or a right handed button press. Once a response was
registered the screen was immediately cleared for a short delay and subsequently
theoutcomewasrevealed(6safter trialonset) indicatingeither receiptof reward
or no reward. Inter-trial-intervals varied between 1 and 8 s. (B) Example reward
probabilities for saccades and button presses as a function of the trial number.
The probability of being rewarded following choice of either the hand or eye
movement was varied across the experiment independently for each movement.
(C) Fitted model choice probability (red) and actual choice behavior (blue) shown
for a single subject. (D) Actual choice behavior versus model predicted choice
probability. Data are pooled across subjects, the regression slope is shown as a
line, vertical bars, SEM.
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Fig. 2. Action values. (A) Region of supplementary motor area showing cor-
relations with action values for hand movement (Vh/green) and a region of
pre-SEF showing correlations with action-values for eye movements (Ve/red).
T-maps are shown from a whole brain analysis thresholded at P " 0.001 uncor-
rected (see Fig. S1 for a version with color bars relating to t stats). (B) Average
effect sizes of Ve (red) and Vh (green) extracted from SEF and SMA. The effects
shownherewerecalculatedfromtrials independentof thoseusedtofunctionally
identify the ROI. Note that only Ve but not Vh modulate the signal in preSEF, and
that activity in SMA shows the opposite pattern. Vertical lines, SEM.
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Figure 2: The task. Each trial started with the presentation of a screen (the left most square in the
figure) and the subjects had 2.5 seconds to make an eye saccade to the red target circle or press
a button with their right hand. After a delay (3.5 second) during which the screen showed only a
fixation point, subjects received the outcome of their choice which indicated whether their choice was
rewarded. The next trial started after an inter-trial interval (ITI) that varied between 1 and 8 seconds.
Figure reprinted with permission from Wunderlich et al. [2009]. Copyright (2009) National Academy
of Sciences.

4.1 Task and subjects

The data used here were previously published in Wunderlich et al. [2009]. The structure of the
decision-making task is shown in Figure 2. In each trial subjects had a choice between making
a saccade (EYE) or pressing a button (HAND). Choices were rewarded with varying probabilities
across the experiment. There were four trial types in the task: (i) free-choice trials (150 trials), in
which subjects could choose between EYE and HAND; (ii) forced-choice trials in which subjects
were instructed to choose EYE (50 trials) or (iii) HAND (50 trials); (iv) null trials in which no
reward was received irrespective of the action selected (50 trials). Forced-choices and null trails
were randomly inserted between the free-choice trials. The environment consisted of two actions
(EYE and HAND) and five states corresponding to the four trial types and one state when the choice
outcomes were shown (reward or no-reward). Actions and states are assumed to be coded using
one-hot representations. Since time was discretized (see below), there were time points at which no
action was taken or no visual stimulus was shown, in which case states and actions were coded using
zero vectors.

The total number of subjects was NSUBJ = 22, and in total NACQ = 1136 images were acquired by
the scanner each containing NVOX = 63191 voxels. Therefore, the fMRI data can be summarized as
a tensor of size 22 ⇥ 1136 ⇥ 63191. Each subject made ⇠ 300 choices. See Supplementary Material
for the details of fMRI preprocessing and model settings.

4.2 Model settings

All the methods were implemented in Tensorflow [Abadi et al., 2016] and gradients (for both
optimization and interpretation of the model) were calculated using automatic differentiation methods
available in this package. See Supplementary Material for the model settings.

4.3 From reward to action

Figure 3(a,b) shows two sets of off-policy simulations. In each simulation there are four choice states,
the times of which are shown by the vertical gray patches in the top panels. The red patch following
each grey ribbon shows the time at which the outcome was revealed following the choice. The first
choice was rewarded (shown by ‘R’ in the graph), but the rest were not. In panel (a) action HAND
was selected in all choice states whereas in panel (b) it was action EYE. Based on this, since in
panel (a) the reward was earned when HAND was selected, we expected that choice to decrease the
probability of selecting action EYE on the next choice. This is shown by the blue bars which illustrate
the gradient of the probability of selecting the EYE action at each subsequent choice with respect to
the amount of reward earned after the first choice (d⇡r). For panel (b), since the reward was earned
as a consequence of choosing EYE in the first choice, we expected the reward to have a positive effect
on the probability of selecting EYE on the next trials, which is consistent with the graph.

Next we asked about the intermediation of each brain region between the reward earned after the first
choice (t1) and the next choice (t2), shown by the red arrow in Figure 3(a). To answer this question,
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To look for neural correlates of action values we had to estimate
the value of taking each action in every trial. We calculated the
action values using a computational reinforcement-learning (RL)
model in which the value of each action, Veye and Vhand, was
updated in proportion to a prediction error on each trial (see Table
S1 for a summary of how the different types of value signals relate
to the components of the experiment). The model also assumed
that action selection in every trial followed a soft-max probability
rule based on the difference of the estimated action values (8). To
test for the presence of action value signals in the brain we took the
model predicted trial-by-trial estimates of the two action values and
entered these into a regression analysis against the fMRI data. In
addition to a whole brain screening for the presence of action-value
signals, we specifically looked for them in areas known to be
involved in the planning of motor actions, including supplementary
motor cortex (18–21) and lateral parietal cortex (22, 23). Given that
both of these areas have previously been shown to contain value-
related signals for movements in nonhuman primates, and that they
are closely interconnected with the area of motor cortex involved
in carrying out motor actions (24–26), we considered these areas
prime candidates for containing action-value representations that
could then be used to guide action-based choices. It is important to
emphasize, however, that the tasks used in previous studies did not
make it possible to determine if the value signals identified were
chosen values or action values.

We also looked for areas that are involved in comparing the
action values to make a choice. Two areas of a priori interest were
the anterior cingulate cortex (ACC) and the dorsal striatum. ACC
has been previously implicated in action-based choice, both in the
context of a human imaging study reporting activity in this area
during a task involving choices between different actions compared
to a situation involving responses guided by instruction (27), and in
a monkey lesion study where ACC lesions produced an impairment
in action-outcome based choice but not in mediating changes in
responses following errors (28). Dorsal striatum has been impli-
cated in both goal-directed and habitual instrumental responding
for reward in rodents (29, 30). Moreover, human fMRI studies
reveal increased activity in both of these regions when subjects

make choices to obtain reward compared to an otherwise analogous
situation in which the rewards are obtained without the need to
make a choice (31–34).

The most simple type of comparison process would be to
compute a difference between the two action values. We tested for
such a difference, but as we had no a priori hypothesis about the
directionality of the computation, we tested for both the difference
between the value of the action chosen and the value of action not
chosen (Vchosen ! Vunchosen), and one involving the opposite
difference (Vunchosen ! Vchosen). As we found evidence for such an
action-value comparison signal in the brain, we then proposed a
simple computational model to provide a conceptual explanation as
to how such a signal could reflect the output of a computationally
plausible decision mechanism.

Results
RL Model Fits to Behavioral Choice Data. A comparison of the choice
probabilities predicted by the RL model and the soft-max proce-
dure to subjects’ actual behavior suggests that the model matches
subjects behavior well. Fig. 1C compares both variables for a typical
subject. Fig. 1D compares the predicted choice probability (binned)
against the actual choice probabilities for the group. A similar linear
regression analysis at the individual level generated an average R2

across subjects of 0.83 and regression coefficients that were signif-
icant at P " 0.001 in each subject.

Action Values. We found neural activity correlating with the action
values for making a hand movement in left supplementary motor
area (SMA; Fig. 2A and Table S2). A region of interest (ROI)
analysis showed that activity in this area satisfied the properties of
a hand action value: it was sensitive to the value of hand movements,
and it showed no response selectivity to the value of eye movements
(Fig. 2B). Activity in lateral parietal cortex, ACC, and right dorsal
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Fig. 1. Experimental Design and Behavior. (A) Subjects were presented with a
choice cue after which they had to respond within 2.5 s by performing a saccade
to the red target circle or a right handed button press. Once a response was
registered the screen was immediately cleared for a short delay and subsequently
theoutcomewasrevealed(6safter trialonset) indicatingeither receiptof reward
or no reward. Inter-trial-intervals varied between 1 and 8 s. (B) Example reward
probabilities for saccades and button presses as a function of the trial number.
The probability of being rewarded following choice of either the hand or eye
movement was varied across the experiment independently for each movement.
(C) Fitted model choice probability (red) and actual choice behavior (blue) shown
for a single subject. (D) Actual choice behavior versus model predicted choice
probability. Data are pooled across subjects, the regression slope is shown as a
line, vertical bars, SEM.
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Fig. 2. Action values. (A) Region of supplementary motor area showing cor-
relations with action values for hand movement (Vh/green) and a region of
pre-SEF showing correlations with action-values for eye movements (Ve/red).
T-maps are shown from a whole brain analysis thresholded at P " 0.001 uncor-
rected (see Fig. S1 for a version with color bars relating to t stats). (B) Average
effect sizes of Ve (red) and Vh (green) extracted from SEF and SMA. The effects
shownherewerecalculatedfromtrials independentof thoseusedtofunctionally
identify the ROI. Note that only Ve but not Vh modulate the signal in preSEF, and
that activity in SMA shows the opposite pattern. Vertical lines, SEM.
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Figure 2: The task. Each trial started with the presentation of a screen (the left most square in the
figure) and the subjects had 2.5 seconds to make an eye saccade to the red target circle or press
a button with their right hand. After a delay (3.5 second) during which the screen showed only a
fixation point, subjects received the outcome of their choice which indicated whether their choice was
rewarded. The next trial started after an inter-trial interval (ITI) that varied between 1 and 8 seconds.
Figure reprinted with permission from Wunderlich et al. [2009]. Copyright (2009) National Academy
of Sciences.

4.1 Task and subjects

The data used here were previously published in Wunderlich et al. [2009]. The structure of the
decision-making task is shown in Figure 2. In each trial subjects had a choice between making
a saccade (EYE) or pressing a button (HAND). Choices were rewarded with varying probabilities
across the experiment. There were four trial types in the task: (i) free-choice trials (150 trials), in
which subjects could choose between EYE and HAND; (ii) forced-choice trials in which subjects
were instructed to choose EYE (50 trials) or (iii) HAND (50 trials); (iv) null trials in which no
reward was received irrespective of the action selected (50 trials). Forced-choices and null trails
were randomly inserted between the free-choice trials. The environment consisted of two actions
(EYE and HAND) and five states corresponding to the four trial types and one state when the choice
outcomes were shown (reward or no-reward). Actions and states are assumed to be coded using
one-hot representations. Since time was discretized (see below), there were time points at which no
action was taken or no visual stimulus was shown, in which case states and actions were coded using
zero vectors.

The total number of subjects was NSUBJ = 22, and in total NACQ = 1136 images were acquired by
the scanner each containing NVOX = 63191 voxels. Therefore, the fMRI data can be summarized as
a tensor of size 22 ⇥ 1136 ⇥ 63191. Each subject made ⇠ 300 choices. See Supplementary Material
for the details of fMRI preprocessing and model settings.

4.2 Model settings

All the methods were implemented in Tensorflow [Abadi et al., 2016] and gradients (for both
optimization and interpretation of the model) were calculated using automatic differentiation methods
available in this package. See Supplementary Material for the model settings.

4.3 From reward to action

Figure 3(a,b) shows two sets of off-policy simulations. In each simulation there are four choice states,
the times of which are shown by the vertical gray patches in the top panels. The red patch following
each grey ribbon shows the time at which the outcome was revealed following the choice. The first
choice was rewarded (shown by ‘R’ in the graph), but the rest were not. In panel (a) action HAND
was selected in all choice states whereas in panel (b) it was action EYE. Based on this, since in
panel (a) the reward was earned when HAND was selected, we expected that choice to decrease the
probability of selecting action EYE on the next choice. This is shown by the blue bars which illustrate
the gradient of the probability of selecting the EYE action at each subsequent choice with respect to
the amount of reward earned after the first choice (d⇡r). For panel (b), since the reward was earned
as a consequence of choosing EYE in the first choice, we expected the reward to have a positive effect
on the probability of selecting EYE on the next trials, which is consistent with the graph.

Next we asked about the intermediation of each brain region between the reward earned after the first
choice (t1) and the next choice (t2), shown by the red arrow in Figure 3(a). To answer this question,
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To look for neural correlates of action values we had to estimate
the value of taking each action in every trial. We calculated the
action values using a computational reinforcement-learning (RL)
model in which the value of each action, Veye and Vhand, was
updated in proportion to a prediction error on each trial (see Table
S1 for a summary of how the different types of value signals relate
to the components of the experiment). The model also assumed
that action selection in every trial followed a soft-max probability
rule based on the difference of the estimated action values (8). To
test for the presence of action value signals in the brain we took the
model predicted trial-by-trial estimates of the two action values and
entered these into a regression analysis against the fMRI data. In
addition to a whole brain screening for the presence of action-value
signals, we specifically looked for them in areas known to be
involved in the planning of motor actions, including supplementary
motor cortex (18–21) and lateral parietal cortex (22, 23). Given that
both of these areas have previously been shown to contain value-
related signals for movements in nonhuman primates, and that they
are closely interconnected with the area of motor cortex involved
in carrying out motor actions (24–26), we considered these areas
prime candidates for containing action-value representations that
could then be used to guide action-based choices. It is important to
emphasize, however, that the tasks used in previous studies did not
make it possible to determine if the value signals identified were
chosen values or action values.

We also looked for areas that are involved in comparing the
action values to make a choice. Two areas of a priori interest were
the anterior cingulate cortex (ACC) and the dorsal striatum. ACC
has been previously implicated in action-based choice, both in the
context of a human imaging study reporting activity in this area
during a task involving choices between different actions compared
to a situation involving responses guided by instruction (27), and in
a monkey lesion study where ACC lesions produced an impairment
in action-outcome based choice but not in mediating changes in
responses following errors (28). Dorsal striatum has been impli-
cated in both goal-directed and habitual instrumental responding
for reward in rodents (29, 30). Moreover, human fMRI studies
reveal increased activity in both of these regions when subjects

make choices to obtain reward compared to an otherwise analogous
situation in which the rewards are obtained without the need to
make a choice (31–34).

The most simple type of comparison process would be to
compute a difference between the two action values. We tested for
such a difference, but as we had no a priori hypothesis about the
directionality of the computation, we tested for both the difference
between the value of the action chosen and the value of action not
chosen (Vchosen ! Vunchosen), and one involving the opposite
difference (Vunchosen ! Vchosen). As we found evidence for such an
action-value comparison signal in the brain, we then proposed a
simple computational model to provide a conceptual explanation as
to how such a signal could reflect the output of a computationally
plausible decision mechanism.

Results
RL Model Fits to Behavioral Choice Data. A comparison of the choice
probabilities predicted by the RL model and the soft-max proce-
dure to subjects’ actual behavior suggests that the model matches
subjects behavior well. Fig. 1C compares both variables for a typical
subject. Fig. 1D compares the predicted choice probability (binned)
against the actual choice probabilities for the group. A similar linear
regression analysis at the individual level generated an average R2

across subjects of 0.83 and regression coefficients that were signif-
icant at P " 0.001 in each subject.

Action Values. We found neural activity correlating with the action
values for making a hand movement in left supplementary motor
area (SMA; Fig. 2A and Table S2). A region of interest (ROI)
analysis showed that activity in this area satisfied the properties of
a hand action value: it was sensitive to the value of hand movements,
and it showed no response selectivity to the value of eye movements
(Fig. 2B). Activity in lateral parietal cortex, ACC, and right dorsal
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Fig. 1. Experimental Design and Behavior. (A) Subjects were presented with a
choice cue after which they had to respond within 2.5 s by performing a saccade
to the red target circle or a right handed button press. Once a response was
registered the screen was immediately cleared for a short delay and subsequently
theoutcomewasrevealed(6safter trialonset) indicatingeither receiptof reward
or no reward. Inter-trial-intervals varied between 1 and 8 s. (B) Example reward
probabilities for saccades and button presses as a function of the trial number.
The probability of being rewarded following choice of either the hand or eye
movement was varied across the experiment independently for each movement.
(C) Fitted model choice probability (red) and actual choice behavior (blue) shown
for a single subject. (D) Actual choice behavior versus model predicted choice
probability. Data are pooled across subjects, the regression slope is shown as a
line, vertical bars, SEM.
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Fig. 2. Action values. (A) Region of supplementary motor area showing cor-
relations with action values for hand movement (Vh/green) and a region of
pre-SEF showing correlations with action-values for eye movements (Ve/red).
T-maps are shown from a whole brain analysis thresholded at P " 0.001 uncor-
rected (see Fig. S1 for a version with color bars relating to t stats). (B) Average
effect sizes of Ve (red) and Vh (green) extracted from SEF and SMA. The effects
shownherewerecalculatedfromtrials independentof thoseusedtofunctionally
identify the ROI. Note that only Ve but not Vh modulate the signal in preSEF, and
that activity in SMA shows the opposite pattern. Vertical lines, SEM.
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Figure 2: The task. Each trial started with the presentation of a screen (the left most square in the
figure) and the subjects had 2.5 seconds to make an eye saccade to the red target circle or press
a button with their right hand. After a delay (3.5 second) during which the screen showed only a
fixation point, subjects received the outcome of their choice which indicated whether their choice was
rewarded. The next trial started after an inter-trial interval (ITI) that varied between 1 and 8 seconds.
Figure reprinted with permission from Wunderlich et al. [2009]. Copyright (2009) National Academy
of Sciences.

4.1 Task and subjects

The data used here were previously published in Wunderlich et al. [2009]. The structure of the
decision-making task is shown in Figure 2. In each trial subjects had a choice between making
a saccade (EYE) or pressing a button (HAND). Choices were rewarded with varying probabilities
across the experiment. There were four trial types in the task: (i) free-choice trials (150 trials), in
which subjects could choose between EYE and HAND; (ii) forced-choice trials in which subjects
were instructed to choose EYE (50 trials) or (iii) HAND (50 trials); (iv) null trials in which no
reward was received irrespective of the action selected (50 trials). Forced-choices and null trails
were randomly inserted between the free-choice trials. The environment consisted of two actions
(EYE and HAND) and five states corresponding to the four trial types and one state when the choice
outcomes were shown (reward or no-reward). Actions and states are assumed to be coded using
one-hot representations. Since time was discretized (see below), there were time points at which no
action was taken or no visual stimulus was shown, in which case states and actions were coded using
zero vectors.

The total number of subjects was NSUBJ = 22, and in total NACQ = 1136 images were acquired by
the scanner each containing NVOX = 63191 voxels. Therefore, the fMRI data can be summarized as
a tensor of size 22 ⇥ 1136 ⇥ 63191. Each subject made ⇠ 300 choices. See Supplementary Material
for the details of fMRI preprocessing and model settings.

4.2 Model settings

All the methods were implemented in Tensorflow [Abadi et al., 2016] and gradients (for both
optimization and interpretation of the model) were calculated using automatic differentiation methods
available in this package. See Supplementary Material for the model settings.

4.3 From reward to action

Figure 3(a,b) shows two sets of off-policy simulations. In each simulation there are four choice states,
the times of which are shown by the vertical gray patches in the top panels. The red patch following
each grey ribbon shows the time at which the outcome was revealed following the choice. The first
choice was rewarded (shown by ‘R’ in the graph), but the rest were not. In panel (a) action HAND
was selected in all choice states whereas in panel (b) it was action EYE. Based on this, since in
panel (a) the reward was earned when HAND was selected, we expected that choice to decrease the
probability of selecting action EYE on the next choice. This is shown by the blue bars which illustrate
the gradient of the probability of selecting the EYE action at each subsequent choice with respect to
the amount of reward earned after the first choice (d⇡r). For panel (b), since the reward was earned
as a consequence of choosing EYE in the first choice, we expected the reward to have a positive effect
on the probability of selecting EYE on the next trials, which is consistent with the graph.

Next we asked about the intermediation of each brain region between the reward earned after the first
choice (t1) and the next choice (t2), shown by the red arrow in Figure 3(a). To answer this question,
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to the choices of subjects (with learning-rates etc. as the model parameters) and then finding the
brain regions that are related to the estimated value of each action or other variables of interest [e.g.,
Daw et al., 2006]. One major challenge for this approach is that, even if the model produces actions
similar to the subjects, the variables and summary statistics that the brain explicitly tracks might not
transparently represent the ones the hypothetical model represents. In this case, either the relevant
signals in the brain will be missed in the analysis, or the model will have to be altered manually in
the hope that the new signals in the model resemble neural activity in the brain.

In contrast, here, we propose a new approach using a recurrent neural network as a type of model that
is sufficiently flexible [Siegelmann and Sontag, 1995] to represent the potentially complex neural
computations in the brain, while also closely matching subjects’ choice behavior. In this way, the
model learns to learn the task such that (a) its output matches subjects’ choices; and (b) its internal
mechanism tracks subjects’ brain activity. A model trained using this approach ideally provides an
end-to-end model of neural decision-making circuitry that does not benefit from manual engineering,
but describes how past inputs are translated to future actions through a successive set of computations
occurring in different brain regions.

Having introduced the architecture of this recurrent neural network meta-learner, we show how
to interpret it by unrolling it over space and time to determine the role of each brain region at
each time slice in the path from reward processing to action selection. We show that experimental
results obtained using our method are consistent with the previous literature on the neural basis of
decision-making and provide novel insights into the temporal dynamics of reward processing in the
brain.

2 Related work

There are at least four types of previous approach. In type one, which includes model-based fMRI
analysis and some work on complex non-linear recurrent dynamical systems [Sussillo et al., 2015],
the models are trained on the behavioral data and are only then applied to the neural data. By contrast,
we include neural data at the outset. In a second type recurrent neural networks are trained to perform
a task [e.g., to maximize reward; Song et al., 2017], but without the attention that we give to both the
psychological and neural data. A third type aims to uncover the dynamics of the interaction between
different brain regions by approximating the underlying neural activity (see Breakspear [2017] for
review). However, unlike our protocol, these models are not trained on behavioral data. A fourth
type relies on two separate models for the behavioral and neural data but, unlike model-based fMRI
analyses, the free parameters of the two models are jointly modeled and estimated, e.g., by assuming
that they follow a joint distribution [Turner et al., 2013, Halpern et al., 2018]. Nevertheless, similar to
model-based fMRI, this approach requires manual model engineering and is limited by how well the
hypothesized behavioral model characterizes its underlying neural processes.

3 The model

3.1 Data

We consider a typical neuroscience study of decision-making processes in humans, in which the data
include the actions of a set of subjects while they are making choices and receiving rewards (DBEH)
in a decision-making task, while their brain activity in the form of fMRI images is recorded (DfMRI).

Behavioral data include the states of the environment (described by set S), choices executed by the
subjects in each state, and the rewards they receive. At each time t 2 T i subject i observes state
si

t 2 S as an input, calculates and then executes action ai
t (e.g., presses a button on a computer

keyboard; ai
t 2 A and A is a set of actions) and receives a reward ri

t (e.g., a monetary reward;
ri
t 2 <). The behavioral data can be described as,

t = 0 (1)

The second component of the data is the recorded brain activity in the form of 3D images taken by
the scanner during the task. Each image can be divided into a set of voxels (NVOX voxels; e.g., 3mm
x 3mm x 3mm cubes), each of which has an intensity (a scalar number) which represents the neural
activity of the corresponding brain region at the time of image acquisition by the scanner. Images

2

t1 t2

EYE and HAND as the two available actions in the task, we only needed to calculate the probability
for one of the actions. Let ⇡t2 denote the probability of taking action EYE at time t2. The effect of
reward at time t1 on the action at time t2 can be calculated as follows,

d⇡r
t1,t2 =

@⇡t2

@rt1

.

This is a straightforward application of backpropagation (calculated using automatic differentiation),
noting again that we consider the inputs received by the network between t1 and t2 to be fixed. d⇡r

t1,t2
can be thought as capturing how much the probability of taking action EYE at time t2 increases as the
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