Integrated accounts of behavioral and neuroimaging data using flexible recurrent neural network models
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Introduction

Model

Results

* Understanding the decision-making system in the brain is important since it is the substrate for human

subject earned
and animal choice abilities, and has close associations with psychiatric and neurological disease.

reward

subject chose

* The model learns to learn the task such that (a) its output matches subjects’ choices; and (b) its internal mechanism tracks subjects’ brain activity. ]
utton press

* A model trained using this approach ideally provides an end-to-end characterisation of the neural decision-making system.

. . . new choice
behavioral: how much earning the reward increases the

chance of choosing button press again?
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* The main challenge: Decisions and their related brain activities are dependent on the history of
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previous experiences. That is, decisions and thus the neural activity that causes them are not only affected by the predicted neural activities: u; = Wh;, observed neural activities neural loss function model-parameters observed action at time t - L what is the role of each bra o
immediate events in the task, but are also affected by a potentially long history of previous inputs, such as rewards, actions - neuratw at Is the role ot each brain region In .
and environmental cues Vi transferring the effect of reward to the next choice!
f =9.2s , = 12.8s
A, 0, ..., 0, _ g .
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) —_ EfMRI(@) EBEH(@) — = g log Wt(at) * We calculated d, , ¢+, for every voxel and every time-step between 7; and 7, ,and masked out the voxels that were not in
FisVyy oous Vi > l teT! the top one percent. By focusing only on the 99th percentile of |d]’" ,, | ,we hoped to limit our analysis to the circuitry
S1s S5 -ees S, N action \ cormbined ; known to be involved in decision-making. —>]
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* Previous approach: Model-based analysis of fMRI data, which involves training a computational model using state T t 031 ... Eereennnns Evernnenns Eeverneenns E
behavioral data, and then searching the brain for regions whose BOLD activity is related to the internal signals and E: EYE action was selected = 0.2-
variables of the model. ——————— »CBEH(@) £(@) — LBEH(@) =+ )\LfMRI(@) R:reward was earned © 0.1 -
0 Red patch: outcomes of action are revealed '
* Problem: Even if the model produces actions similar to the subjects, the variables and summary statistics that Grey patch: choice time 0.0 — —
the brain explicitly tracks might not transparently represent the ones the hypothetical model represents. In this DD PO D0 D P D
. . . . . . . . . ’ ’ ’ ’ ’ ’
case, e'the'f the relevant signals in th.e bralr‘1 will be missed in the analysis, or th.e model V.V'” have to be altered h; = f(a;—1,7¢—1,5¢,hs_1;0) action predictions for time t behavioural loss function weight of neural loss function determined using cross-validation
(manually) in the hope that the new signals in the model resemble neural activity in the brain.
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- We propose a new approach using a recurrent neural network as a type of model that is sufficiently m) Model parameters (9) include W (red lines), parameters in the softmax layer (green lines) and parameters in the RNN layer.

flexible to represent the potentially complex neural computations in the brain, while also closely matching subjects’
choice behavior.

) Hyper-parameter A determines the balance between neural and behavioral data in the combined loss function.

Interpreting the model

* We show how to interpret the model by unrolling it over space and time to determine the role of each brain

region at each time slice in the path from reward processing to action selection.
The effect of reward at time ¢, on the

action at time tz.
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Data

The sum of individual voxel contributions at each point in time is
equal to the total behavioural effect of reward:

* The data used here were previously published in Wunderlich et al. [2009].
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£ For the above equation to hold it is necessary for the state of H: HAND action was selected _
§ ,"\ each line R the network to be fully determined by the neural activity (u). R: reward was earned = 0.05
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time f, to action at time , . N, X cell outputs are different and are both required to determine P PRI2IONDP PP
the outputs in the next time-step, and therefore in the case of

0 TR 2TR Naco-1TR AN TR S LSTM cells equations do not hold.
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In each trial subjects
made a choice
between making an
eye saccade to the
red target circle or
pressing a button
with their right hand

make choice

outcome
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* Each subject made ~300 choices.

T
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time discretization
model settings

* All the methods were implemented in Tensorflow and gradients (for both optimization and interpretation of the model) were calculated using automatic differentiation methods available in this package.

RMSProp was used for optimization.

* The time of behavioral data was discretized with resolution dt = 0.6625.

* We have introduced a new architecture for investigating the neural substrates of decision-making in

NcgLLs = 48

Nsypy = 22 Naco = 1136 Nyox = 63191

Conclusion
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directly from the data.VWVe further showed that the model can be interpreted to uncover the temporal

engagement of different brain regions in choice and reward processing.

® Amir Dezfouli, Kristi Griffiths, Fabio Ramos, Peter Dayan, Bernard W Balleine. Models that
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* Besides being used as a standalone analysis tool, this approach can inform model-based fMRI analyses

to investigate whether the model correctly tracks the brain’s internal mechanisms

relevant neural signals involved in decision-making and requires further modification.

. That is, if a brain
region is found to be important in the current analysis, but not using the model-based fMRI analysis,
this could mean that the model used to extract neural information is not representing all of the
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* The results show that, for each action, the top |% of voxels contain three key cortical and subcortical brain regions known to

be critically involved in reward-processing and decision-making, i.e., (i) striatum (associative aStr; or ventral, vStr), (ii) anterior

cingulate cortex (ACC) and (iii) supplementary motor area (SMA).

* These anatomical regions are among the same anatomical regions that VWunderlich et al. [2009] also identified as involved in

decision-making in this task.

* The temporal order of engagement of these regions is also consistent with their functional role in decision-making.




